
Adaptive Touch Sampling for Energy-Efficient
Mobile Platforms

Alexander W. Min, Kyungtae Han, Dongho Hong and Yong-joon Park
Intel Corporation

2111 N.E. 25th Avenue, Hillsboro, OR 97124

Email: {alexander.w.min, kyungtae.han, dongho.hong, yong-joon.park}@intel.com

Abstract—In today’s mobile computing environments, touch display
and interface is becoming a primary means to enable interactive
and perceptual applications, e.g., 3D mobile gaming. To realize highly
interactive and responsive applications, touch display constantly scans
touch input signals at high frequency, thus wasting energy. However,
it is challenging to optimize the touch scan frequency due the highly
unpredictable nature of human-touch interactions. In this work, we
propose an adaptive touch sampling frequency scaling algorithm based on
users’ touch behavior, to improve touch devices’ energy efficiency while
improving user experience. We implemented the proposed algorithm to
demonstrate its efficacy for mobile tablet platforms, and our evaluation
results show that our proposed adaptive touch scan algorithm reduces
touch power consumption by up to 44% compared to the conventional
fixed scan rate algorithm, while enhancing user experience when needed.

Index Terms—Energy efficiency, touch interface, adaptive sampling,
mobile platforms.

I. INTRODUCTION

A. Motivation

Small form-factor mobile platforms, such as smartphones, tablets,

and Ultrabooks, are rapidly becoming the main vehicle for computing,
networking, and entertaining. Today’s mobile devices are equipped
with touch interfaces/sensors [1], which are widely used as a primary
means to enable intuitive, prompt, and accurate user-device interac-
tions, making their energy-efficient design even more important.

However, despite the rapidly growing demand and popularity of
touch interfaces [2], [10], [13], the problem of optimizing touch
interface for low-power consumption has received little attention. As
the touch interfaces are widely used as a primary means to enable
user-device interaction, and the display size of mobile platforms con-
tinue to increase, an efficient power management of touch interface

becomes even more important. We observed that the current touch
interface design is energy inefficient [9] mainly due to its simple
design, but exploiting the power-responsiveness tradeoff to improve
energy efficiency remains a challenging problem. Touch interface is
managed by a touch controller, which in general scans the display at a
fixed, pre-defined frequency to detect user input, i.e., (x,y)-coordinate
of the touch on the display. Although a frequent scan promises better
responsiveness, a too frequent scan wastes power, not only for the

touch device itself, but also for the entire platform, because each scan
event/interrupt may prevent the CPU/platform from entering lower-
power sleep states [8], [11], [12]. In fact, our measurement results
reveal that touch power consumption increases almost linearly with
touch scan frequency, as shown in Fig. 1. This indicates that lowering
scan frequency may reduce the power consumption, at the risk of
degraded touch responsiveness and touch detection accuracy, which
can ultimately hurt user experience. Therefore, touch scan algorithms

must be designed carefully to optimize the power consumption, while
delivering good user experience. In this paper, we present a new touch
power management framework that intelligently adapts the touch scan
rate “on-the-fly” based on user behavior.

B. Limitation of Current Approach

Most of the current touch sampling algorithms are not optimized
in terms of power and performance, because they use fixed scan

0 50 100 150 200 250
1

1.5

2

2.5

3

3.5

4

Touch scan frequency (Hz)

N
o

rm
a

liz
e

d
 p

o
w

e
r

c
o

n
s
u

m
p

ti
o

n

Fig. 1. Normalized power consumption for different touch scan frequencies.

frequency, regardless of users’ touch behavior. For example, Mi-
crosoft defined the minimum scan frequency of 100 Hz (i.e., 10ms
scan interval) to guarantee good touch responsiveness [3]. On today’s
touch-enabled mobile devices, the scan frequency is also fixed at
111Hz when touch events occur. However, we observed that 10ms

scan interval may not be sufficient to accurately detect the trace of
fast touch motion. Fig. 2 illustrates two circles drawn with fast touch
motion under different scan frequencies. The circle under 10ms scan
interval (see Fig. 2(a)) appears as a polygon rather than a circle.
From the power perspective, if the touch scan interval is reduced from
10ms (i.e., 100 Hz) to 4ms (i.e., 250Hz) for better user experience
(see Fig. 2(b)), the (normalized) touch power consumption will be
significantly increased by 1.8 times from 2.01 to 3.67, as shown in

Fig. 1. On the other hand, 10ms scan interval might be too frequent
(i.e., over-sampling) for slow touch motion, resulting in a waste of
energy, as shown in Figs. 2(c), 2(d). Our measurement study indicates
that, for slow touch motion, 10ms scan interval oversamples the
touch input (see Fig. 2(c)), hence wasting power, whereas 30ms scan
interval still captures enough touch events to draw a smooth circle
(see Fig. 2(d)). Thus, a touch scan algorithm with fixed scan rate
(e.g., once every 10ms) may not be sufficient to provide best touch

experience with high energy efficiency.
To address this problem, we propose an intelligent touch interface

control system that can dynamically adjust touch scan frequency “on-
the-fly” based on the speed of the touch motion, thus saving power
and improving touch responsiveness. The key idea is to adjust the
touch interval (or sampling frequency) so that the distance between

two consecutive touches can be maintained at a predefined target
distance. By doing this, we can avoid over- or under-sampling touch
inputs, making it energy efficient while providing a high-quality,
consistent touch experience. Specifically, we employ the proportional-
integral-derivative (PID) controller [6] to accurately track the touch
input coordinates and speed, and implemented it in Intel platforms.

II. THE PROPOSED DYNAMIC TOUCH SCAN RATE OPTIMIZATION

In this section, we introduce the proposed adaptive touch sample
algorithm that uses the PID controller to adjust touch sample rate
based on user inputs.

(a) (b) (c) (d)

Fig. 2. Circles drawn with: (a) fast motion, 10ms scan interval; (b) fast
motion, 4ms scan interval; (c) slow motion, 10ms scan interval; and (d) slow
motion, 30ms scan interval.

Touch

Screen

Touch

Controller
Processor

Analog Circuits Digital Circuits

Digital

Data

Analog

Data

Fig. 3. Block diagram of touch screen system.

A. Background

A touch screen is an electronic visual display that users can control

through touch gestures, by touching the screen with one or more
figures or other objects (e.g., touch pen). There are a variety of
touch screen technologies with different methods of sensing touch,
e.g., resistive or capacitive touch screens. In general, a touch screen
system is composed of three components: (i) a touch screen, (ii) a
touch controller, and (iii) a processor, as shown in Figure 3. The
touch screen senses the touch input in the screen surface as analog
data. Then the touch controller converts the analog sensing data into

digital value using an A/D converter, and calculates the location on
the touch using signal processing algorithms, including noise filtering.
The processor receives the touch location through serial interface
(e.g., I2C or USB), and sends it to user applications, such as drawing.

The touch screen samples touch events at a pre-defined scan
rate, which affects touch responsiveness and power consumption.
The scan rate determines the frequency of the touch samples being

produced by the touch controller, i.e., a higher scan rate results in
more sampled data. Higher scan rate, in general, provides higher
touch responsiveness at the cost of higher power consumption, due
to the additional energy overhead to the analog and digital circuits.
Some touch controllers can dynamically change the scan rate by
programming in the processor. We use this programming feature in
the touch controllers. The next section presents the proposed dynamic
touch scan rate algorithm to optimize power and responsiveness.

B. Proposed Adaptive Touch Architecture

The ultimate goal of our adaptive touch sample algorithm is to
minimize the number of touch sample instances, thus minimizing
the touch-incurred energy consumption, while enhancing (or at least
preserving) touch quality, e.g., responsiveness. To achieve this goal,
we propose to adjust touch scan frequency based on touch speed—

e.g., lower the touch sample rate when a user’s touch motion is slow,
and vice versa. This is quite different from the traditional touch scan
mechanism, where the scan rate is fixed regardless of the speed of
the touch motion.

One of our key observations is that, with the traditional fixed scan
rate algorithm, the touch samples are often over-sampled or under-
sampled depending on the touch input speed, resulting in either (i) a

waste of energy (when over-sampled) or (ii) a degradation of touch
quality (when under-sampled). For example, when touch motion is
fast, the inter-touch-sample distance becomes too long due to under-
sampling, as shown in Fig. 2(a). On the other hand, when touch mo-

Scan Rate

Updater

Target

Distance

Scan

Interval

Touch

Panel

Touch

Controller

-+

Error

Distance

Estimator

Traveled

Distance

Fig. 4. Block diagram of the proposed dynamic touch scan rate architecture.

tion is slow, the inter-touch-sample distance becomes unnecessarily
close, wasting power without improving touch experience.
The proposed algorithm aims to maintain the sampled touch

distance to a desired target distance by dynamically adjusting the scan
rate on-the-fly, based on previous touch history. By doing this, our
approach can not only reduce the power consumption significantly

by avoiding an over-sampling of touch inputs, but also provide a
smoother touch experience. After each touch input, a new scan rate
is calculated by keeping track of the distance that a touch finger/stylus
travels per scan, thus providing consistent user experience regardless
of the touch motion speed. In addition, for slow touch motion, it
provides significant power savings due to its ability to dynamically
reduce the touch scan rate.
In order to maintain the sampled touch distance at a desired

target distance, we employed a PID control mechanism. The PID
controller suits our need because it has generic control loop feedback

mechanism widely used in control systems, and it has historically
been considered to be the best controller in the absence of knowledge
of the underlying process [7]. Basically, the controller attempts
to minimize the error by adjusting the control inputs, where the
error values are calculated as the difference between a measured
distance and a target distance. Fig. 4 illustrates the proposed scan
rate adaptation algorithm using the PID controller.
There are three new blocks for the dynamic scan rate adaptation:

(i) distance estimator, (ii) comparator, and (iii) scan rate updater.

• The distance estimator calculates the traveled distance between
two consecutive touch samples. In the implementation, we consid-
ered a pixel as a unit of traveled distance. We employed a simple
distance estimation to minimize computation, as:

∆di = |xi − xi−1|+ |yi − yi−1|, (1)

where xi and yi are the pixel coordinates touch occurred at the
ith touch event.

• The comparator calculates the actual error, i.e., the difference be-
tween actual traveled distance and the pre-defined target distance.

• The scan rate updater updates the touch scan rate based on the
three error components with their associated weights (see Eq. (2)).

These three components closely interact with each other, and
update the touch scan interval while touch inputs are generated.

C. Algorithm Description

Here we elaborate on the proposed touch scan rate algorithm. In the

PID controller, a control output, i.e., touch scan rate, can be calculated
with summation of the proportional, integral, and derivative terms, as
shown below:

u(t) = Kpe(t) +Ki

∫ t

0

e(r)dr +Kd

d

dt
e(t), (2)

where Kp, Ki, Kd, e and t denote the proportional (P) gain, integral
(I) gain, derivative (D) gain, error, and time, respectively. In the

Algorithm 1 ADAPTIVE TOUCH SCAN RATE ALGORITHM

set Kp, Ki, Kd, initial integral, initial scan interval, max scan interval,
min scan interval and target distance

while (true)
scan interval = initial scan interval
integral = initial integral
previous error = 0
while (consecutive touch events)

calculate ∆d

error = target distance - ∆d

integral = integral + error × scan interval
derivative = (error - previous error) / scan interval
scan interval = Kp × error + Ki × integral + Kd × derivative
if scan interval > max scan interval then

scan interval = max scan interval
if scan interval < min scan interval then

scan interval = min scan interval
previous error = error
update touch controller with scan interval

end while
end while

Fig. 5. Evaluation setup: (a) host, (b) touch controller, (c) touch panel, (d)
robot arm, and (e) power measurement unit.

implementation, we empirically set the PID coefficients P, I, and D, as
0.1, 2000, and 0.005, respectively, throughout the measurement tests.
The coefficient can be further optimized to improve the efficiency or
accuracy of the controller.

Algorithm 1 describes the PID algorithm employed in the pro-
posed touch scan rate adaptation. The initial touch scan interval is
set properly to provide a good responsiveness for the first touch event.
In the algorithm, we set the initial scan interval to 10ms. We limit
the upper bound of the touch scan interval as 35ms to guarantee
minimum responsiveness and react effectively against sudden motion
speed changes. Also, we limit the lower bound of the touch scan
interval at 4ms due to hardware limitation of the touch sensor device.

The most important parameter is the target distance, i.e., the
desired distance between touch samples. The target distance should
be set carefully, so that it can provide a smooth touch experience
while avoiding over-sampling of the touch events. The optimal target
distance also depends on the size and resolution of the panel. In the

implementation, we empirically set the target distance fixed at 15.

III. EVALUATION

In this section, we demonstrate the efficacy of the proposed adap-
tive touch scan algorithm via in-depth measurement results on tablet
mobile platform. We first present the testing setup and methodology,
and then evaluate the performance.

(a) Conventional

(b) Proposed

Fig. 6. Curve drawings using robot arm for relatively fast touch motion
speeds: (a) Traditional fixed scan interval (10ms) and (b) Proposed dynamic
scan interval. The proposed algorithm generates more touch events than (a),
improving touch experience at the cost of increased touch power consumption.

(a) Conventional

(b) Proposed

Fig. 7. Curve drawings using robot arm for relatively slow touch motion
speeds: (a) Traditional fixed scan interval (10ms), and (b) Proposed dynamic
scan interval. The proposed algorithm generates less touch events than (a),
significantly reducing power without hurting touch experience.

A. Evaluation Setup and Methodology

In our experiments, we compare the following two testing schemes:
(i) the conventional fixed touch scan interval scheme (scan interval
fixed at 10ms), and (ii) the proposed dynamic touch scan interval
scheme. For repeatable experiments in a controlled environment, we
used a robot arm (Fig. 5(d)) to draw a constant testing pattern with a
configurable drawing speed on the touch panel (Fig. 5(c)). The touch
controller (Fig. 5(b)) processes a touch event when a touch is detected
by the touch panel and sends the event packet to the host (Fig. 5(a)).

The event packet contains coordinates of the touch event on the
screen. The host calculates ∆d and feeds the PID algorithm with
∆d and the current touch scan interval. PID returns the new touch
scan interval and the host updates the touch controller’s registry with

TABLE I
PERFORMANCE/POWER COMPARISON: TRADITIONAL VS. PROPOSED TOUCH SCAN ALGORITHMS

conventional fixed scan interval proposed dynamic scan interval

speed time event count frequency avg. scan power event count frequency avg. scan power

(cm/sec) (ms) (Hz) interval (ms) (normalized) (Hz) interval (ms) (normalized)

40.00 350 33 94.29 10.6 1.00 61 174.29 5.7 1.52

23.33 600 52 86.67 11.5 0.94 59 98.33 10.2 1.02

12.73 1100 101 91.82 10.9 0.98 64 58.18 17.2 0.76

8.75 1600 145 90.63 11.0 0.98 67 41.88 23.9 0.66

6.67 2100 192 91.43 10.9 0.98 74 35.24 28.4 0.61

5.38 2600 233 89.62 11.2 0.97 74 28.46 35.1 0.57

4.52 3100 281 90.65 11.0 0.97 91 29.35 34.1 0.57

3.89 3600 329 91.39 10.9 0.97 103 28.61 35.0 0.57

3.41 4100 379 92.44 10.8 0.99 113 27.56 36.3 0.56

3.04 4600 425 92.39 10.8 0.99 124 26.96 37.1 0.56

2.75 5100 472 92.55 10.8 0.99 136 26.67 37.5 0.56

the new touch scan interval for the next scan. The touch controller

is wired into the power measurement unit (Fig. 5(e)).

The hardware specification of the test environment is listed be-
low:

• Host computer: Intel Core i5 CPU @2.6GHz; 4GB RAM;

Windows 7

• Touch panel: 10.1”

• Robot arm: RB-Lyn-644 [4]

• Power measurement unit: NI USB-6289 [5]

B. Evaluation Results

Touch sampling frequency has a direct impact on the smoothness
of touch experience, especially for applications such as drawing,
scrolling, dragging; e.g., a too infrequent touch event sampling may
cause either (i) an angulated curve for drawing applications, or (ii) a
jerky animation for scrolling and dragging applications. On the other
hand, a too frequent touch sampling beyond a certain frequency level
may result in a waste of energy, without improving smoothness. Our
evaluation results indicate that the proposed adaptive touch sampling

algorithm minimizes energy consumption while providing smooth
touch experience.

Figs. 6, 7 show the drawings captured by the robot with the speed
of the touch motion and number of touch events generated during the

test. We made two key observations. First, when the touch speed is
relatively fast (i.e., 23.33 cm/sec and 40 cm/sec), as shown in Fig. 6,
the proposed scheme samples touch events more frequently to provide
a better touch experience or smoothness, at the expense of increased
touch controller power consumption. Second, when the touch speed
is relatively slow (i.e., from 2.75 cm/sec to 12.73 cm/sec), as shown in
Fig. 7, the proposed scheme samples less number of touch events to
avoid over-sampling without degrading touch experience, thus signifi-

cantly reducing touch power consumption. Note that the typical touch
input speed belongs to this touch speed range, thus our algorithm can
save power in most of the practical touch usage scenarios. Therefore,
we can conclude that the proposed touch sampling algorithm can
balance the performance-power tradeoff more efficiently, thanks to
its ability to dynamically adjust touch frequency on-the-fly.

Table I compares the touch power consumption, among other
metrics, between the conventional fixed scan rate algorithm, and
the proposed adaptive scan rate algorithm. The measurement results
show that the fixed scan rate algorithm consumes a similar amount of
power regardless of the touch motion speed, being highly inefficient.

In contrast, the touch power consumption of the proposed algo-
rithm gradually decreases as the touch motion speed decreases from
40 cm/sec to 2.75 cm/sec, and it reduces the power consumption by up
to 44% at a very slow speed, demonstrating its efficacy in balancing

the performance-power tradeoff. Note that the power overhead from

switching the scan rates is negligible, and power savings from our
algorithm outweighs them.

IV. CONCLUSION

The current touch sampling algorithm is highly energy inefficient,
mainly because it uses fixed touch sampling rate. To address this
problem, we proposed a new touch scan frequency control system
that can adapt the scan frequency “on-the-fly” based on the speed of
touch motion—it dynamically increases the scan frequency for fast

touch motion and decrease scan frequency for slow touch motion—
thus achieving better touch responsiveness and higher energy effi-
ciency for mobile platforms. For future work, we are considering
having a universal target distance using DPI of display screen by
converting number of pixels to inch to make the proposed technique
be independent from the platform screen size and resolution.

REFERENCES

[1] Android Sensor Box,
https://play.google.com/store/apps/details?
id=imoblife.androidsensorbox&hl=en.

[2] The Leap Motion Controller,
https://www.leapmotion.com.

[3] Microsoft device requirements for touch sampling rate,
http://msdn.microsoft.com/en-us/library/windows/

hardware/jj134351.aspx/.
[4] Lynxmotion AL5D 4 Degrees of Freedom Robotic Arm,

http://www.robotshop.com/lynxmotion-al5d-
4-degrees-robotic-arm-flowstone.html.

[5] National Instrument USB-6289 Multifunction DAQ,
http://sine.ni.com/nips/cds/view/p/lang/en/

nid/209154.
[6] K. Åström and T. Hägglund. Advanced Pid Control. ISA-The Instru-

mentation, Systems, and Automation Society, 2006.
[7] S. Bennett. A History of Control Engineering, 1930-1955. IEE control

engineering series. P. Peregrinus, 1993.
[8] L. S. Brakmo, D. A. Wallach, and M. A. Viredaz. µSleep: A Technique

for Reducing Energy Consumption in Handheld Devices. In ACM
MobiSys, June 2004.

[9] A. Carroll and G. Heiser. An Analysis of Power Consumption in a
Smartphone. In USENIX ATC, June 2010.

[10] Juha Häikiö and Minna Isomursu and Tapio Matinmikko and Arto Wallin
and Heikki Ailisto and Tua Huomo. Touch-Based User Interface for
Elderly Users. In Mobile HCI, September 2007.

[11] A. W. Min, R. Wang, J. Tsai, M. A. Ergin, and T.-Y. C. Tai. Improving
Energy Efficiency for Mobile Platforms by Exploiting Low-power Sleep
States. In ACM Computing Frontiers, May 2012.

[12] A. W. Min, R. Wang, J. Tsai, and T.-Y. C. Tai. Joint Optimization of
DVFS and Low-power Sleep-state Selection for Mobile Platforms. In
IEEE ICC, June 2014.

[13] L. Zhong and N. K. Jha. Energy Efficiency of Handheld Computer
Interfaces: Limits, Characterization and Practice. In ACM MobiSys, June
2005.

