
A Polyhedral-based SystemC Modeling and Generation Framework
for Effective Low-power Design Space Exploration

Wei Zuo1, Warren Kemmerer1, Jong Bin Lim1,
Louis-Noël Pouchet2, Andrey Ayupov3, Taemin Kim3, Kyungtae Han3, Deming Chen1

1Electrical and Computer Engineering Department, University of Illinois, Urbana-Champaign, USA
2Computer Science and Engineering Department, Ohio State University, USA

3Strategic CAD Labs of Intel Corporation, USA
{weizuo, kemmere2, lim43, dchen}@illinois.edu, pouchet@cse.ohio-state.edu

{andrey.ayupov, taemin.kim, kyungtae.han}@intel.com

Abstract—With the prevalence of System-on-Chips there is a growing
need for automation and acceleration of the design process. A classical
approach is to take a C/C++ specification of the application, convert
it to a SystemC (or equivalent) description of hardware implementing
this application, and perform successive refinement of the description to
improve various design metrics. In this work, we present an automated
SystemC generation and design space exploration flow alleviating several
productivity and design time issues encountered in the current design
process. We first automatically convert a subset of C/C++, namely affine
program regions, into a full SystemC description through polyhedral
model-based techniques while performing powerful data locality and
parallelism transformations. We then leverage key properties of affine
computations to design a fast and accurate latency and power charac-
terization flow. Using this flow, we build analytical models of power and
performance that can effectively prune away a large amount of inferior
design points very fast and generate Pareto-optimal solution points.
Experimental results show that (1) our SystemC models can evaluate
system performance and power that is only 0.57% and 5.04% away
from gate-level evaluation results, respectively; (2) our latency and power
analytical models are 3.24% and 5.31% away from the actual Pareto
points generated by SystemC simulation, with 2091x faster design-space
exploration time on average. The generated Pareto-optimal points provide
effective low-power design solutions given different latency constraints.

I. INTRODUCTION

The industry has moved to high-level hardware-capable languages
to model the entire SoC. In particular, transaction level modeling
(TLM) with SystemC is immensely popular and is being widely used
currently [1]. Despite the popularity and advantages of SystemC, it
has several limitations. One is the inherent difficulty associated with
SystemC generation. Traditionally, the SoC design specification is
often provided in a high level language such as C/C++ by software
engineers as a golden reference model. Also, hardware/software
partitioning is manually done by system engineers, and the hardware
portions are re-implemented in SystemC with software being run on
microprocessor SystemC IPs in order to simulate the complete system
[2]. This approach has a few drawbacks. First, additional design effort
in SystemC is needed to re-implement the hardware portion of the
SoC. Second, since this SystemC model is built manually, it is difficult
to effectively and extensively explore different design decisions; this
leaves designers uncertain about the optimality of the current design.
Third, at such an early design stage, accurate power estimation
becomes difficult with very little lower level implementation details
[3]. Finally, the SystemC IPs are often written with the emphasis on
code re-usability and are optimized for simulation speed. Thus, it may
not be synthesizable by HLS tools. Furthermore, the SystemC model
of the accelerator only provides fast modeling of a single design point.
A designer seeking to design a new system should instead look at an
optimal power and latency trade-off curve. Generating this trade-off
curve requires a detailed exploration of the practical design space.

Even with expedited simulation, the design space remains too large
to consider while blindly iterating over the entire space.

In this work, we demonstrate that these limitations can be
successfully addressed with an automated design flow when fo-
cusing on the class of affine programs. This important program
class encompasses numerous computation methods used in image
processing, medical imaging, statistics etc. [4], [5], [6]. It has the
distinguishing feature of having a control-flow that can be exactly
described at compile-time [4] thereby allowing the design of accurate
power/latency models, and very powerful optimization frameworks to
expose parallelism with data reuse that have already been developed
[5], [6]. Our proposed framework takes a C/C++ application as an
input, automatically extracts the region(s) which are affine programs,
and for those: (1) automatically performs software transformations
to expose parallelism and temporal data locality; (2) automatically
emit two SystemC variants of the program region, a high-level
model embedding accurate power and latency information, and a
fully synthesizable version for HLS implementation; (3) automatically
implement a design space exploration engine considering different
loop tile sizes and parallelism degrees.

By tackling these challenges, our framework enables designers to
have accurate SystemC-level accelerator models considering power
and latency, which can be further seamlessly integrated in the SoC
platform, and to fast explore the tremendous design space considering
different micro-architecture and design constraints. To the best of our
knowledge, this is the first work with integration of software trans-
formation, hardware modeling with SystemC generation and effective
design space exploration. We make the following contributions:

• Automated C-to-SystemC transformation engine that generates
SystemC code for regular loop-based applications; enabling both
accurate high-level power/performance modeling and high-level
synthesis solution;

• An effective characterization flow for latency and power estima-
tion enabling fast and accurate high-level modeling for regular
affine programs;

• Accurate analytical power and latency models for effective
design space pruning;

• Efficient accelerator design space exploration for accurate power
and latency Pareto curve generation to guide effective low-power
design.

The paper is organized as follows. Sec. II covers the background and
related work. Sec. III presents the methodology and implementation
of our framework. Sec. IV presents experimental results, before
concluding in Sec. V.

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 357

II. BACKGROUND AND RELATED WORK

Application modeling: Transaction-level modeling (TLM) is
a popular methodology for high-level system modeling [1]. In TLM,
details of communication and computation models are separated,
and various models are provided with different time approximations,
namely loosely-timed, approximate-timed and cycle-accurate [7]. This
kind of mixed abstraction levels captures the function modules,
micro-architectural details and essential timing information in one
language, hence enabling hardware/software co-simulation and fast
design space exploration. In practice, TLM is supported by SystemC
where the computation and communication models are implemented
as function calls and channels. However, the creation of such a
SystemC model is not easy. Many previous works are focusing on
generating the SystemC from Unified Modeling Language (UML) [8],
which is a high level language for hardware specification. However,
the transformation from C/C++ to SystemC is less studied. From
another side, some HLS tools generate the SystemC simulation
model after synthesis is done. Nonetheless, this model is mainly for
representing the behavior of a particular synthesized hardware. Thus
contains tedious implementation details, cycle-accurate information,
and also with no power annotation. This low-level abstraction is not
a good option for high level modeling.

Software transformations: Efficient design requires a good
mapping of the computation to the hardware resources. Data locality
must be considered, to reduce data movement between computing
elements to improve performance and energy. Coarse-grain par-
allelism is critical, typically to enable replication of modules for
parallel execution. Other forms of parallelism-based optimizations
(e.g., for pipelining or task parallelism) are also critical for good
design, and automating these optimizations has proved to be a very
difficult challenge. In this work, we consider affine programs, that is
the set of (sub-)programs where the data- and control-flow can be
expressed using affine functions of the surrounding loop iterators and
variables invariant in the program region. These regions are known
as Static Control Parts [4]. Numerous previous work has shown the
significant advantages of operating on this program class, for instance
for automatic data locality and parallelism extraction via loop tiling
[5]. Recent work demonstrated the power of an integrated approach
for high-level synthesis using the polyhedral framework [6], providing
the PolyOpt software infrastructure to optimize affine programs for
HLS. In this work, we use PolyOpt to automatically detect affine
program regions, perform all software transformations needed to
make the code suitable for tiling, a.k.a. loop blocking, and additional
transformations for parallelism and data locality improvement using
the Pluto algorithm [5]. Because of the static control flow properties
of affine programs, the behavior of the program is essentially captured
by iterating the same computation chunks (tiles), and this precise set
of iterations can be exactly modeled at compile-time [6].

High-level power modeling: Extensive studies have been done
for power modeling at different abstract-levels. Among those, power
macro-modeling has been widely adopted. However, most of previous
work is focused on building the power macro models for primitive
components [9], [10], and consists of lookup tables to estimate power
for that circuit. The indices are different variables capturing the
relationship of power and dependent variables such as switching
probability and operating frequency, etc. However, this method has
two drawbacks. First, a large offline characterizing effort is required to
build a comprehensive library covering all basic circuits. Second, most
of these studies stay at RTL level and the accuracy of this method
is limited when applied at high level (also known as behavior level),
where little hardware details is available. Thus, some assumptions and
predictions must be made on the hardware implementation, which

limits the accuracy. Also, an online training is sometimes required to
compensate for this inaccuracy [9].

Recently, SystemC level power modeling has attracted wide
attention. Many studies focus on TLM power modeling [11], [12].
However, this often requires the users to generate their own power
macros to plug into the model. In contrast, we automatically generate
them. Others build power model for hardware directly at the SystemC
level, but they are usually targeted at communication structures
and interconnecting networks [13]. On the software side, techniques
to accelerate simulation of functional models using host-compiled
techniques have also been developed [14]. But accurate behavior-
level SystemC power modeling for hardware IPs is still a highly
challenging problem. In this work, we also build models for each
unique computation blocks (tiles). But we leverage several funda-
mental properties of affine programs, using the ability to describe
analytically their control and data flow in closed form yet exact
representations [4], thereby bypassing the need to execute the model
for the entire application. Accuracy is achievable because of the
inherent regularity of this program class.

Design space exploration for power improvement: Power is
one of the key design constraints for SoC. Many literature work
targets at analyzing and optimizing power at early design stage.
Design space exploration for power improvement has been extensively
adopted, considering different design factors such as communication
cost [15], memory hierarchy [10], macro architecture [10], application
execution on certain processors [16], etc. However, most of these
methods rely on a detailed power modeling for the primitive com-
ponents, as well as carefully-designed high-level intermediate repre-
sentation/prediction of design implementation [10], [17], which limits
the accuracy of power estimation or the universality of applications.

Numerous previous studies have been done in different aspects
considering high-level modeling and design space exploration sepa-
rately. However, a fully automated and integrated solution for accel-
erator modeling and design space exploration is still a big challenge.

III. ACCELERATOR MODELING AND DESIGN SPACE
EXPLORATION

In this work, we propose an automatic design flow to generate
accelerator SystemC model and deliver effective design space explo-
ration of different accelerator micro-architectures.

A. SystemC Generation Framework

Overview of the Framework: Latency and power are two key
constraints for energy-smart SoC designs. It is important to estimate
these factors accurately at early design stage so they can help guiding
system-level design space exploration. SystemC is widely used at
system level to deliver fast simulation speed, and many works have
been done to create different levels of SystemC models to achieve
the balance between accuracy and simulation speed. In this work, we
propose a new system-level design flow to estimate power and latency
accurately for SystemC models of electronic circuits, targeting IPs
or hardware cores that contain multiple affine loops. Compared to
previous work, it has following distinguishing features. (1) It is fully
associated with the PolyOpt compilation framework. Thus, we can
use the powerful loop transformation in PolyOpt to expose atomic
tiles in the source code and transfer them to SystemC modules. (2) It
generates both communication and computation blocks and build the
correspondingly latency and power models. Furthermore, it considers
different input switching activities, and simulates the interaction
between the accelerator and the system. (3) It characterizes the latency
and power for one tile, and it is easy to integrate these tile-level

358

Unroll
degree

Polyhedral Transformation & Tiling

Stage 1
Polyhedral Optimization

Stage 2
Power and Latency Characterization

Communication &
Computation

Training vectors w/
different SA

Power and performance characterization

One tile per loop

Generate SystemC with power & latency counters

Stage 3
SystemC Generator

Transformed
AST

c/c++

SystemC Model Synthesizable SystemC

Power and Latency

Fig. 1. SystemC generation and analysis framework

models to a single framework for the whole design power/latency
estimation. Thus, we can evaluate and explore different optimization
/ design options provided by PolyOpt. (4) Compared to Functional
Level Power Analysis, our tile-based power/latency analysis flow has
the flexibility to use IPs and blackboxes in the design, and to target
different technologies. (5) It achieves fast runtime through the use of
behavior level SystemC models for fast simulation; this is because
we build detailed power/latency models for tiles of the loops without
the need of simulating the entire design at lower design levels. (6)
With fast speed and high accuracy, our SystemC modeling flow can
enable early design evaluation and design space exploration.

We first highlight the key features of our design flow, which are
summarized in Fig. 1. Our framework is a multi-stage process to
automatically generate SystemC codes and build power and perfor-
mance models. First, we transform the input program to make loop
tiling possible, and tile the loops using polyhedral transformations
with the PolyOpt infrastructure. After that, we extract tiles and
separate them into components: the computation blocks and the
communication blocks (at the beginning/end of the tile, to transfer
the data needed from/to memory to/from the local buffers). In the
next stage, we separately characterize the power and latency of these
parts with information extracted from gate-level simulation. Then,
we build a power model for each part, considering different input
switching activities. Finally, using polyhedral analysis, we generate
a SystemC model for the tiled loop kernels and back-annotate the
power and latency information to the SystemC model to compute the
corresponding values for the entire design.

Architecture of Generated Accelerator: The general archi-
tecture of generated accelerator is shown in Fig. 2. It consists of
computation modules (Acc tile) and local memories (local Mem).
The computation blocks in our model read data from local memories
and execute computation operations; and the communication blocks
take charge of transferring data between local memories and main
memory. We have two input flags to control the generated hardware:
(1) Tile size, it affects the loop tiling decision in software trans-
formation stage, and further affects the local buffer size, which in
turn influences the communication cost. (2) Parallelism degree, it
decides at which loop level the loop unrolling is implemented, and
we do complete unrolling for replication at that level if semantically
possible. Thus, together with the tile size, parallelism degree decides
the replication numbers of one tile. Within each block, we implement
an input switching activity calculation function, which dynamically

computes the input switching activity, and guides the selection of
power information associated with the tile.

	

Local	
 Mem	

	

Acc_,le1	

…	

Acc_,le2	

	

Acc_,leN	

	

Local	
 Mem	
 …

Hardware

Main	

Memory	

SW	
 SW	
 SW	

SW	
 SW	

Fig. 2. Architecture of the generated accelerator

Software Transformations: The first step of our framework is
to apply software transformations to restructure the computation so as
to expose (1) good temporal data locality to reduce data movements;
(2) sufficient parallelism, to enable parallelization via replication; (3)
explicit atomic computation tiles and the associated tile data reuse
buffers and data transfers operations. All these transformations are
available in the PolyOpt framework which uses a set of very powerful
mathematical models to reorganize the operations in the computation
while preserving the semantics [6].

It is important to note that reorganizing the computation into
atomic tiles, that is loop tiling, is central to the development of our
framework. Most practical affine programs are tilable provided the
program is first transformed to make tiling possible. Enabling the
applicability of tiling in a fully automatic way has been previously
studied and addressed in the state-of-the-art Pluto framework for
instance [5], which has been ported for HLS purpose in the PolyOpt
framework. A complex sequence of loop transformations including
loop interchange, skewing, fusion, distribution, peeling, code motion,
etc. is automatically computed and applied to make the program
tilable whenever possible, dramatically broadening the class of pro-
grams that can be tiled. Fig. 3 shows an example of tiling.

Power and Latency Characterization: At this stage, we focus
exclusively on a tile, and construct a detailed power and latency
characterization for each of them. These results are used to compute
the total application latency and power in integration stage. Compu-
tation blocks of a tile are fed into a HLS tool to generate RTL code,
and generate the local memory library using a memory compiler.
These two portions are combined together using an automatically
generated wrapper and go through the logic synthesis to generate
the netlist. Then, a gate-level simulation is applied followed by the
power analysis to generate the latency and power information. Loop
unrolling is used when specified by the user, otherwise loop pipelining
is implemented. For the communication blocks, we generate a library
of memory IPs with different sizes, and characterize the read/write
latency and power according to different input switching activities
and build the look-up table.

We automatically generate the testbench and the training input
vectors with controllable switching activities. We construct a test
vector pool with switching activities from 0.1 to 0.9 with a step
size of 0.1. We use uniform distribution to decide the flipping bits
in adjacent test vectors. Then, a gate-level simulation is done to
obtain the latency and switching activity, which is then fed into the
power analyzer to obtain the power profile. The power is composed
of internal, switching and leakage power. The first two are due to
capacitive charging/discharging of output load and internal transistors
of the logic gates, respectively, and are the source of dynamic power.
The later represents the static power. This information is later back-
annotated into the SystemC model. Note that since our framework is
general, the user can provide real testing vectors for characterization
to accommodate realistic switching activities.

359

SystemC Code Generation: The third step in the framework
is the implementation of the SystemC Generator. This is integrated in
the PolyOpt application, and uses information acquired by polyhedral
model analyses. The generator receives as input the transformed AST
produced by PolyOpt, which has already been annotated with poly-
hedral information on loop trip count, data dependences, parallelism
etc. as well as the unroll degrees selected by the user.

The generator proceeds recursively, following the AST structure.
It first creates a Function Module (FM) node for each tile, and
proceeds recursively (bottom up) for the surrounding loops, as il-
lustrated in Fig. 3. If the loop is annotated by PolyOpt as parallel
then parallelism via replication can be implemented, and the user-
provided information about the unrolling factor is used to replicate
the tile modules in the loop body. For non-tile FMs, we remove the
loop and replace it with SystemC initialization and synchronization
signals. Latency will be emulated using the trip count expression
(which can be a function of the FM parameters) which is computed
for all loops by PolyOpt. At this stage, all the unrolled loops are
implemented in FM format.

for(i=0; i<N; i++)
 for(j=0; j<N; j++)
 x[i]+=A[i][j]*y[j];

 for (it=0; it < N/T; it++)
 for (jt=0; jt < N/T; jt++)
 for (i=it*T; i < it*T+T; i++)
 for (j=it*T; j < jt*T+T; j++)
 x[i] += A[i][j]*y[j]; FM1

FM2
FM3

Fig. 3. Left: C/C++ code fragment isolated by PolyOpt. Right: tiled code
and equivalent Function Modules generated. FM1 is a tile of size T ×T .

To create the SystemC model, a SystemC module is created for
each FM node, including creating ports and signal bindings; inserting
the corresponding function body to this FM as a SC THREAD.
Timing information is embedded in wait(...) calls to accurately
represent the latency of modules. Power information is obtained from
the power model indexed by different input switching activities. To
accurately calculate the input switching activities for each tile, we
implement a switching activity calculation function by aggregating
the hamming distance between the input vectors of two adjacent
iterations, and then divide the sum by the iteration numbers of one
tile, which is obtained from the trip count expressions. Note that this
function dynamically computes the input switching activities of one
tile, which captures the propagation of switching activities among
different tiles, as well as the state probabilities of each tile.

Another back-end generates the fully synthesizable version to
generate SystemC code suitable for HLS tools. This code differs from
the SystemC modeling code in three aspects. First, to implement the
parallelism via replication, we need to solve the memory access con-
flicts. We adopt a memory partitioning and banking strategy to divide
the original array into different memory banks[18]. Given the memory
banks and array partition degrees, our flow replaces the original array
by the partitioned banks, and generates correct accessing order for
each bank of the original arrays by constructing the corresponding
branch conditions. Second, to solve the read/write conflicts to the
same memory element in the same statement, we identify memory
read and write access, and generate separate statements by inserting
temporary variables and wait() statements to schedule them. Finally,
we remove all the latency and power annotation functions which is
used in SystemC modeling.

Integration: After generating the SystemC, the power and
latency information for one tile is back-annotated into the SystemC
model, and a fast SystemC simulation is then run for estimating
the entire design. Latency is modeled using the SystemC wait()
statements inserted in each tile. Power is modeled using the em-

bedded monitoring function. A SystemC simulation is used for
estimation. Once each tile module starts running, a function named
”update power()” is called, updating the power value by adding the
module’s dynamic power. The wait() function is then called with the
function’s execution time. Once the execution is done, the following
execution update power () is called again to accumulate the module’s
idle power value. We now present how to compute the values of the
wait latencies and power annotations.

Latency computation for computation blocks: For computa-
tion blocks, the latency of executing one loop iteration is equal to
the execution time of its body (i.e., the associated tile FM, in this
section, we do not distinguish the word tile and function module) plus
the overhead of parameter setting up time and the synchronization
for the corresponding module. We have found these types of latency
overhead to be negligible for the kind of parallelism we implement.
Thus, the overall execution time estimation is the sum of the latency
of the tiles, considering the total number of tiles to be executed in
sequence. Note that for unrolling via replication, as we only unroll a
sync-free parallel loop, the total number of tiles executing serially is
the number of tiles divided by the unroll factor. Within one tile, the
iteration number of the tile body is proportional to the tile size.

Using polyhedral analysis makes it possible to compute exactly
how many times a loop is executed [6] by counting the number of
integer points in the iteration domain of the loop . We use this specific
feature of affine programs to derive a simple yet precise latency model
in our setup, where for each different tile module Ti having a latency
lat(Ti) computed via HLS, we compute the latency as:

Lcomp = ∑
i
|Domain(Ti)| ∗ lat(Ti)∗ s f actori/u f actori (1)

where Domain(Ti) is the set of all executions of Ti, which is described
using affine inequalities, that is the iteration domain of the tile Ti [4].
|S| denotes the cardinality of the set S and is a Ehrhart polynomial
here [19]. This value is automatically computed by PolyOpt, and it
multiplies the tile size factor s f actor, which indicates the difference
between the given tile size and the tile size used in characterization
flow. Then, the value is divided by the unroll factor u f actori by which
the tile is replicated (it is 1 for all tiles which are not replicated).

Latency computation for communication blocks: For com-
munication block, we do not apply unrolling due to the memory
port limit. Thus, for each read and write block Rdi and Wri, given
the read/write latency latrd and latwr per access, the total read/write
latency Lrd /lwr are computed as:

Lrd = ∑
i
|Domain(Rdi)|(∑

iteri

iteri ∗ latrd) (2)

Lwr = ∑
i
|Domain(Wri)|(∑

iteri

iteri ∗ latwr) (3)

where Domain(Rdi) and Domain(Wri) are computed in the same
way as Domain(Ti), and iteri are the number of iterations within one
communication block. Thus, the total latency Ltotal is:

Ltotal = Lcomp +Lrd +Lwr (4)

The communication/computation overlap is not modeled in current
work, we will further work on extending the flow to support that.

Power integration for computation blocks: To compute the
average power consumed by the accelerator, we first aggregate the
energy consumed by different components, and then divide the total
energy by latency, which is estimated using previously mentioned
method. Since tiles are being repeatedly invoked by modules, we
assume the leakage power consumption of each computation block
is identical for all executions. Therefore, given Powleak(Ti) the static

360

power for one tile module Ti as computed by the tools, the energy
gained by static power Pcompleak is:

Ecompleak = ∑
i

Powleak(Ti)∗u f actori ∗Ltotal (5)

For dynamic power, the tiles only consume dynamic power when they
are activated. As we need to embed in the SystemC file a measure
of the average power, we can not directly sum up the individual
tile dynamic powers to calculate the total value. Instead, we provide
an average for the design by first integrating to get the energy per
module, and then normalize by the total execution time to get an
average instantaneous dynamic power metric. Note that unlike the
integration of latency (where we can directly multiply lat (Ti) by the
unroll factor, since all tile copies have the same latency for different
module copies), the input switching activities of each tile copy may
be different, thus different tiles consume different amount of energy.
Thus instead of multiplying the power for one tile by unrolling factor,
we aggregate the power of all tile copies. Thus, given Powdyn, the
dynamic power of one tile Ti, we compute the dynamic energy as:

Ecompdyn = (∑
i

u f actori

∑
j=0

Powdyn(Ti j)∗ lat(Ti)) (6)

where Ti j is the j-th copy of tile Ti.

Power integration for communication blocks: For each com-
putation block, the power information of read/write operations of
corresponding local memory is available, together with the read/write
latency per access. For the static energy, we follow the the similar
calculation of the Ecompleak , given leakage power for each local
memory Mi, the energy is

Ecommleak = ∑
i

Powleak(Mi)∗Ltotal (7)

For dynamic power, the blocks only consume dynamic power when
communication happens since we do not have unrolling factor for
communication block. Thus given the dynamic power for each
read/write block Powdyn(Rdi) and Powdyn(Wri), the energy is:

Erddyn = ∑
i

Powdyn(Rdi)∗Lrd (8)

Ewrdyn = ∑
i

Powdyn(Wri)∗Lwr (9)

Therefore, the average power Pwravg is:

Pwravg = (Ecompleak +Ecompdyn +Ecommleak +Erddyn+Ewrdyn)/Ltotal (10)

B. Accelerator Power and Latency Modeling

Using the methodology provided above, we are able to efficiently
and accurately acquire the power and latency associated with a
given configuration of C/C++ code. However, the overall design
space covers the entire range of possible code configurations. This
includes all possible combinations of iteration tile sizing and loop
unrolling configurations. Instead of iterating exhaustively over the
entire design space, we recognize that the general relationships
between code parameters and the resulting power and latency can be
roughly extracted by sampling. We therefore implement the following
methodology to effectively model the power and latency within the
design space. The overall framework is shown in Fig 4.

First, we specify the loop structure of the C/C++ code that is
being considered. For each loop, we indicate the range of valid
iteration tile sizes. When considering nested loops, we also identify
the maximum loop depth for which unrolling should be applied.
While an exhaustive search would involve every possible combination
of tile iteration sizes and loop unrolling configurations, we greatly
condense the process by iterating over each loop range with a stride

SystemC model generation for
sampled points

Sampling on
tile size and unrolling dimension

Loop structures of application
latency constraints

SystemC
simulation

Surface fitting

Power model Latency model

Fig. 4. Analytical power/latency modeling framework

that increases exponentially. This sampling rate is primarily motivated
by recognizing that power and latency trends in the memory IP
incorporated into our accelerators generally corresponds to sizes
correlated with a log scale. Therefore, we sample the design space
on a scale that is logarithmically proportional to the entire space,
resulting in a significant reduction of the overall framework runtime.

Second, once the array of sampling vectors is generated, we iterate
over each vector. Every vector is exported to the files corresponding
with the SystemC generator inputs. A script automatically initiate
SystemC code generation, compilation, and execution. The power and
latency results for each sampling vector are output by the SystemC
execution, and are congregated into a single file.

Third, we feed this file into a MATLAB script. This script
automatically identifies the sampling vectors and their corresponding
power and latency. By specifying the range of sample vector points
(ranges of tile sizes and loop unrolling), we generate a new array
of sampling vectors. In generating these vectors, we iterate over
each range with a constant stride (instead of an exponential stride),
resulting in an array of sampling vectors span the design space at a
much finer granularity. This array is used for design space interpola-
tion. Using the sampled data, we generate a two surface curve: one
describes the relationship between the code parameters (tiles sizes and
unrolling configuration) and power; the other curve to describe the re-
lationship with latency. As each sampling vector is multidimensional
and has the possibility of having a very high dimensionality (some
benchmarks have 6 dimensions), we use a general tool that allows the
interpolation of hyper-surfaces. Specifically, we have chosen to utilize
the MATLAB function griddatan, which uses the multidimensional
sample points to perform a triangulation based linear interpolation
for each point specified in our high granularity array. So long as the
input data remains continuous, this methodology results in power and
latency estimations that are reasonably acculturate. The combination
of all power and latency estimations at a high granularity constitute
our power and latency models.

To illustrate the accuracy of our model, Fig. 5 (Left) shows our
model of the design space of benchmark AtAx. As described above,
this model is generated using our interpolation methodology applied
to points acquired by logarithmically sampling the design space.
The high granularity interpolation is set to model all loop unrolling
configurations and all iteration tile sizes of striding 4. In comparison,
Fig. 5 (Right) shows the complete design space as acquired directly
from SystemC simulation. We evaluate the accuracy of our model
by comparing each point in our interpolated model with the value
calculated directly using our SystemC framework. In doing so, we
find that the average error in power across all points is 4.10% while
the average error in latency is 3.28%. Therefore, despite the small

361

subset of sample points, the model maintains accuracy and preserves
the general curve trends shown in the real design space.

2 4 6 8 10 12

x 10
−3

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Latency (s)

P
o

w
e

r
(W

)

AtAx Modeled

2 4 6 8 10 12

x 10
−3

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Latency (s)
P

o
w

e
r

(W
)

AtAx Measured

Fig. 5. Modeled design space and measured design space

C. Design Space Exploration

Combining the power and latency modeling together with the
SystemC generation framework, we develop a fast design space
exploration technique to effectively optimize the design regarding
power and latency budgets. Fig. 6 shows the key components.

While it is theoretically interesting to consider the entire design
space, the true value of design space exploration comes from identi-
fying points that correspond to the optimal trade-offs. The notion of
trade-off between power and latency can be seen by again referencing
Fig. 5. In considering any blue point, there exists a red point that either
has less latency for an equivalent level of power, or there exists a red
point that uses less power for the same latency cost. To choose a
design corresponding to a blue point would therefore waste power or
result in unnecessary additional latency. Thus, all red points, which
mathematically correspond to the Pareto front, are considered optimal,
while all blue points shown are considered non-optimal and should
be trimmed from the design space.

Specification: C/C++
User-defined power &

latency constraints

Design space
prunning

Power / Latency
models

Pareto-optimal
candidates

SystemC Generation
and Analysis

Design Space
Prunning

Pareto-optimal points
SystemC model

Power & latency
annotated SystemC

SystemC simulation

Power and latency
info

Fig. 6. Overview of the DSE framework

In order to trim the design space, a script provided by [20]
automatically extracts the Pareto points from the high granularity
modeled design space. To ensure that we do not prune away real
optimal points due to model accuracy limitation, we add a thickness
to the curve to preserve the correctness. This is accomplished by
performing a linear stepwise curve fitting to the Pareto points. We
then translate this curve vertically and horizontally for a user specified
distance. By comparing the power and latency data of all points in
our design space with this translated curve, and trimming all points
that lie above it, we effectively generate a ”thickened” Pareto front
to describe the optimal power and latency trade-offs.

All points in the thickness-adjusted Pareto-curve are the optimal
solution candidates and are sent back to the SystemC generation

flow and the simulation is run. In completing this simulation, we
collect the real power and latency values associated with the candidate
Pareto points. As we have now eliminated the error associated
with our design space model relative to our extracted points, we
confidently prune away all points that no longer fit the Pareto frontier
without considering thickness. The finalized results consist of a set
of optimized points that are ready for designer’s consideration.

To illustrate the viability of our Pareto front extraction process,
we again consider the example described in Fig. 5. We now further
consider the 173 points common to each Pareto frontier. When
analyzing these points, the average error in power is approximately
2.28% while the average error in latency is approximately 0.51%.
Thus, our accuracy corresponding to the Pareto curve points is
generally higher than our overall model accuracy, indicating that our
model effectively captures trends along the Pareto frontier.

IV. EXPERIMENTS

A. Experimental Setup

All initial power and latency characterization is accomplished
utilizing industry–standard tools (Tool names omitted due to industry
policies). All experiments are implemented using 45-nm standard
cell library for computation blocks, and 45-nm memory compiler
for memory blocks. All experiments target a frequency of 1GHz.
Benchmarks are synthesized using fixed-point arithmetic.

TABLE II. BENCHMARK DESCRIPTION

Benchmark Description N Dim
GEMM Matrix multiplication 1024 6
AtAx Matrix Transpose & Vector Multiplication 1024 4

GEMVER Matrix Vector products and addition 1024 4
Jacobi-2d 2-D Jacobi stencil computation 1024 5

Correlation Correlation matrix computation 1024 6
Covariance Covariance Computation 1024 6
Sobel Filter Sobel operator edge detection algorithm 1024 4

We evaluate our framework using six benchmarks from the Poly-
Bench/C test suite. To achieve diversity, we choose benchmarks from
computation kernels with different applications. AtAx, GEMM and
GEMVER are the numerical kernels; Jacobi-2d is a stencil algorithm,
and is widely used in the image processing field. Correlation and
Covariance benchmarks contain computations that are frequently used
in data-mining algorithms. In addition to the applications from the
PolyBench/C test suite, we also evaluate the Sobel-filter, which is
a common image processing algorithm used for edge detection. The
benchmarks are described in Table II. Column N refers to the problem
size for the input code, and column Dim refers to the maximal
loop nesting depth of each benchmark after tiling. Take AtAx as an
example, the input code has 2 loops, each contains 1024 iterations,
while after tiling it has Dim = 4 loops.

Our experiments consist of two parts. We first test the accuracy
of our SystemC generation and power/latency characterization frame-
work. Since all tiles are repetitive, we can, without loss of accuracy,
decrease the number of the loop iterations (thus reduce the replicated
tile numbers) by a factor of 8 to shorten the gate-level simulation time.
In the second portion of our experiments, we evaluate our framework
for accelerator design space exploration (DSE).

B. Latency and Power Modeling Results

In order to evaluate the accuracy of our SystemC model, we
compare the estimated latency and power with a golden model. The
golden model is the SystemC code of the entire design generated
by our SystemC generator. We first input our SystemC code through
HLS tool which is followed by a logic synthesis process. We then

362

TABLE I. LATENCY AND POWER MODELING RESULTS

Benchmark Latency (ns) Power (w) SystemC modeling error rate (%)
Golden Estimated Err rate (%) Golden Estimated Err rate (%) Latency Power

GEMM 5086744 5087336 0.012 0.0736 0.072 2.17 0.02 2.29
AtAx 55287 55726 0.43 0.046 0.043 6.53 0.0439 4.98

GEMVER 63742 63934 0.30 0.069 0.065 5.80 0.38 5.68
Jacobi-2d 182338 182998 0.36 0.0803 0.0843 4.98 0.38 4.55

Correlation 8435027 8476829 0.50 0.12 0.116 3.33 0.68 4.36
Covariance 8349287 8375059 0.31 0.1119 0.1175 5.00 0.42 6.01

Sobel 162060 163376 0.81 0.0821 0.0874 6.46 0.94 7.32
Average - - 0.51 - - 4.96 0.57 5.04

run a gate-level simulation to generate the power and latency results.
The iteration tile size is set to 32 in all benchmarks for this study,
but our characterization flow works for any reasonable tile sizes.

The results are shown in Table I. We verify our results in two
stages. First, in order to verify the accuracy of our one-tile based
estimation method, we run the framework iteration once with a fixed
input vector and compare the results with the golden model. The
results of this comparison for latency are shown in columns 2-4;
results for power are in columns 5-7. Second, in order to verify the
accuracy of our model relative to different switching activities, we
randomly generate twenty input vector sets with different switching
activities ranging from 0.1 to 0.95 with a step size 0.05, to cover the
possible switching activity range, and each set includes 10000 input
vectors. The values are used as input to the framework as well as
to the golden model. We then calculate the harmonic mean of the
eighteen error rates with the results shown in columns 8-9.

From the results we see that the latency estimation is highly
accurate (within 1%). The accuracy is achieved primarily for two
reasons. First, all the benchmarks are regular, affine programs with
predictable loop boundaries. Second, our framework ensures both the
parallel execution among tiles and the sequential execution between
loops. Thus, the latency is highly predictable at the SystemC-level.

However, relative to latency, power estimation is significantly
more challenging due to complex dependencies relating to hardware
specific implementation. Nevertheless, we obtain an average error
rate of 5.04%. This accuracy is achieved for several reasons. After
the polyhedral transformation and SystemC generation stages, the
design consists primarily of tiles with identical shapes and loop
bodies (except some partial tiles at the loop boundaries). Additionally,
the replicated tiles are independent of each other and are executed
in parallel, which are implemented by resource duplication. By
recognizing these properties of our hardware implementation, we are
able to maintain a high accuracy in using our tile-based power model.

C. Details of Design Space Exploration

We now use our framework for design space exploration. It
explores design candidates with different tile sizes and parallelism
degrees. For each benchmark, a Perl script provides a wrapper around
the SystemC generation framework. The loop dimensions and a vector
describing the range of iteration tile sizes associated with each loop is
given as the input. We use the memory compiler to generate different
memory IPs, with sizes from 64B to 16 KB.

Following our analytic models, we iterate over the design space
with a log2 sampling density and acquire power and latency values
for each sample vector. Using these results we construct power and
latency models for each benchmark which can be seen in Fig. 7,
and due to the space limitation, we can only display details of
four benchmarks. We have chosen representative benchmarks from
different application suits. In all figures, we have highlighted the
Pareto frontier in red. In all experiments, we compensate for possible
model error by including in our Pareto frontier all points whose

corresponding latency and power values deviate up to 10us and 10uW
respectively from the original Pareto curve. We then run SystemC
simulation with all the points in the thickened curve, and prune away
the inferior points to generate the final Pareto curve. By comparing the
measured power and latency of these points with the results generated
from our model we calculate the accuracy for each benchmark.

0.005 0.01 0.015 0.02
0.01

0.02

0.03

0.04

0.05

Gemver

Latency (s)

P
o

w
e

r
(W

)

P1

P2

0.009 0.0095 0.01 0.0105 0.011 0.0115 0.012
0.009

0.01

0.011

0.012

0.013

0.014

0.015

Sobel

Latency (s)

P
o

w
e

r
(w

)

0 0.2 0.4 0.6 0.8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Correlation

Latency (s)

P
o

w
e

r
(w

)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Covariance

Latency (s)

P
o

w
e

r
(w

)

Fig. 7. Modeled design space and Pareto points

The results are shown in Table III. Column Accuracy lists the
respective error rates of power and latency. We observe that the
average error for the power model is 5.30%, and for the latency
model, the average error is 3.24%. Column # simulation points shows
the total number of sample points that are run through our SystemC
generation and simulation process. We subdivide this number into
two parts: the sampling points for model generation, and the Pareto
points for final verification.

In order to illustrate the benefit of utilizing a thickness-adjusted
Pareto-curve prior to our secondary simulation run, we consider the
points that would have been eliminated without thickness consider-
ation. For each benchmark, we identify all points added due to the
effect of curve thickening and determine if any of such points are
contained within the final set of optimized points. Any such points
represent true Pareto points present in the final optimized set that,
without thickness consideration, would have been prematurely pruned
due to modeling limitations. Column Thickness Addition represents
the number of additional points considered due to curve thickening.
Column True Pareto represents the number of true Pareto points that
were identified as a result. We see that in all cases, adding a degree
of thickness proved beneficial.

In order to illustrate the DSE speed-up associated with our
methodology, we list the number of total points in the design space
associated with each experiment in column #Total points. This is
computed as the product of the number of all possible iteration tile

363

TABLE III. COMPLETE RESULTS OF DSE

Benchmark Accuracy (%) # Simulation points # Total Speed- Thickness True Average Runtime
Power Latency Sample Pareto points Up Addition Pareto per Point (mins)

GEMM 4.83 3.38 250 719 7086244 7313 60 4 11.46
AtAx 2.14 1.01 324 314 58564 92 58 17 0.16

GEMVER 5.34 0.89 100 195 58564 199 52 9 0.39
Jacobi-2d 7.68 0.11 25 263 14641 51 127 3 0.39

Correlation 8.66 4.56 625 642 28344976 22372 125 13 9.19
Covariance 3.25 3.19 625 784 28344976 19877 217 27 9.36

Sobel 5.30 0.89 25 257 14641 52 132 4 0.23
Average 5.31 3.24 - - - 2091 - - 4.45

sizes and possible unroll degrees. For the loop levels that cannot be
unrolled due to dependency, we do not consider them as valid points.
We estimate the speed-up obtained by our flow compared with the
solution by exhaustively traversing the design space, which is listed
in column SpeedU p. We observe that our flow provides design-space
exploration speed-up ranging from 51x to 22372x, with the average
value of 2091x. We also list the SystemC simulation time for one
point for each benchmark in column Average runtime per Point. We
observe that for certain benchmarks, the runtime are several minutes,
and extensive exploration is not a feasible solution.

From Fig 7, we first observe a clear trade-off between power
and latency across the design space. For example, if we consider the
Pareto points of Covariance and compare these points, we can see a
6x difference of latency and 5x difference of power. We also observe
the differences in Pareto-curves between different benchmarks. For
example, the curves of correlation and covariance are more gradual,
while the curves found in GEMVER and Sobel are distinctly sharper.
By further inspection, we observe that for computation-intensive
kernels, the Pareto curves have similar shapes to those of Correlation
and Covariance, while the communication-intensive kernels possess
Pareto curves similar to those of GEMVER and Sobel.

When we consider communication-intensive kernels such as
GEMVER, we observe that the points corresponding to the smallest
latency have a large variance along the power axis with only minimal
variance in latency. Through further analysis of these points, we
discover that these points exhibit complete unrolling of all non-
dependent loops. In such conditions, the latency is dominated by
serialized memory communication and we have already achieved the
maximum speed-up available by paralleling the computation. Since
the runtime performance is bound by serialized memory commu-
nication, the decrease in latency is trivial, resulting in the steep
curve. Therefore, for these types of designs, designer can pay a small
additional latency and achieve a large amount of power savings. For
example, in GEMVER, the design point P1 is 1.7X more power-
efficient than the design point P2 with only 4% longer latency, as
shown in Fig 7. These observations confirm that our design space
exploration flow does provide significant insight of the behavior of
applications, and hence effectively guide the design choices.

V. CONCLUSION

In this paper, we proposed (1) a new automatic SystemC-level
modeling and synthesis framework, offering fast and accurate power
and performance estimation at the early design stage. This was made
possible by exploiting the control and data flow regularities in affine
programs; (2) accurate analytical models providing power and latency
information for all points in the design space, which effectively
optimize the accelerator design decisions; (3) a fast design space
exploration to generate accurate power and latency Pareto curve to
guide effective low-power design. Our proposed framework combines
SoC modeling and design space exploration, as well as enabling the
HLS implementation. It has the potential to significantly improve
design productivity and quality for highly power-efficient accelerator
designs, which are essential for modern low-power SoC chips. Our
future work includes carrying out accurate and fast system-level

modeling and design space exploration for the entire SoC with an
automated software/hardware co-design engine.

Acknowledgement. This work is partially supported by an Intel grant.
We would like to thank Dr. Mondira (Mandy) Pant of Intel for helpful
discussions.

REFERENCES

[1] J. Bandler, A. Mohamed, and M. Bakr, “Tlm-based modeling and design
exploiting space mapping,” Microwave Theory and Techniques, vol. 53,
no. 9, Sept 2005.

[2] I.-Y. Chuang, T.-Y. Fan, C.-H. Lin, C.-N. Liu, and J.-C. Yeh, “HW/SW
co-design for multi-core system on ESL virtual platform,” in VLSI-
DAT’11, 2011.

[3] S. Ahuja, “High level power estimation and reduction techniques for
power aware hardware design,” Ph.D. dissertation, Virginia Polytechnic
Institute and State University, 2010.

[4] “Some efficient solutions to the affine scheduling problem. part ii.
multidimensional time,” International Journal of Parallel Programming,
vol. 21, no. 6, 1992.

[5] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “Pluto:
A practical and fully automatic polyhedral program optimization sys-
tem,” in PLDI’08, 2008.

[6] L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong, “Polyhedral-based
data reuse optimization for configurable computing,” in FPGA’13, 2013.

[7] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in
CODES+ISSS’03, 2003.

[8] C. Xi, L. JianHua, Z. ZuCheng, and S. YaoHui, “Modeling SystemC
design in UML and automatic code generation,” in Proc. ASP-DAC’05.

[9] A. Bogliolo, L. Benini, and G. De Micheli, “Regression-based RTL
Power Modeling,” ACM Trans. Des. Autom. Electron. Syst., vol. 5, no. 3,
pp. 337–372, Jul. 2000.

[10] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: a Pre-
RTL, power-performance accelerator simulator enabling large design
space exploration of customized architectures,” in ISCA’14. IEEE,
2014.

[11] in Models, Methods, and Tools for Complex Chip Design, 2014.
[12] G. Vece and M. Conti, “Power estimation in embedded systems within a

SystemC-based design context: The PKtool environment,” in Intelligent
solutions in Embedded Systems, June 2009, pp. 179–184.

[13] B. Talwar and B. Amrutur, “A System-C based microarchitectural
exploration framework for latency, power and performance trade-offs
of on-chip Interconnection Networks,” in NoCArc’08, 2008.

[14] S. Chakravarty, Z. Zhao, and A. Gerstlauer, “Automated, retargetable
back-annotation for host compiled performance and power modeling,”
in CODES+ISSS’13, 2013.

[15] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “Orion 2.0: a fast
and accurate NoC power and area model for early-stage design space
exploration,” in DATE’09, 2009.

[16] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in MICRO’09.

[17] D. Chen, J. Cong, Y. Fan, and Z. Zhang, “High-level power estimation
and low-power design space exploration for FPGAs,” in ASP-DAC’07,
2007.

[18] Y. Wang, P. Li, and J. Cong, “Theory and Algorithm for Generalized
Memory Partitioning in High-level Synthesis,” in FPGA’14, 2014.

[19] S. Verdoolaege, R. Seghir, K. Beyls, V. Loechner, and M. Bruynooghe,
“Counting integer points in parametric polytopes using Barvinok’s
rational functions,” Algorithmica, vol. 48, no. 1, Jun. 2007.

[20] “http://www.mathworks.com/matlabcentral/fileexchange/17251-pareto-
front.”

364

	MAIN MENU
	Help
	Search
	Print
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20150527105016
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 16.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 16.2000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 8
 7
 8

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move down by 1.08 points
 Normalise (advanced option): 'improved'

 32

 D:20150305140023
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 Full
 1277
 247
 Fixed
 Down
 1.0800
 0.0000

 Both
 5
 CurrentPage
 8

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 8
 6
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'improved'

 32

 D:20150305140023
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 Full
 1277
 247
 Fixed
 Down
 3.6000
 0.0000

 Both
 5
 CurrentPage
 8

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 8
 6
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: current page
 Trim: none
 Shift: move down by 18.00 points
 Normalise (advanced option): 'improved'

 32

 D:20150305140023
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 Full
 1277
 247

 Fixed
 Down
 18.0000
 0.0000

 Both
 5
 CurrentPage
 8

 CurrentAVDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 8
 7
 1

 1

 HistoryList_V1
 qi2base

