
P-91: Parametric Evaluation of Computer Displays for Optimized Display
Data Transmission

Kyungtae Han, Nithyananda S. Jeganathan, and Paul S. Diefenbaugh
Intel Labs, Hillsboro, Oregon, USA

Abstract
Display sub-system is among the highest power consuming entity

on a computer platform and the energy efficiency of the display

pipeline has a significant impact on the battery life, especially in

mobile devices. Traditional display sub-systems expend a lot of

energy to maintain the stable images on the screen by

transmitting the entire screen contents to display even if there is

little or no change in the screen. This paper characterizes the

computer generated screen updates for different type of

workloads by two independent techniques: HW & SW and

presents an analysis of the screen updates. Our data shows that

typically only less than 20% of the screen content changes and

there is 20-200ms idle time period between active frames. Future

display technologies can take advantage of this redundancy in

screen contents to save power on the display sub-system.

1. Introduction
Today's computer displays consume the largest power (about

30%) among the components in mobile platforms and thus energy

efficiency of the display pipeline has a significant impact on the

battery life of the mobile device [1]. Traditional displays expend a

lot of power in maintaining the illusion of stable image by

refreshing the panel at a fixed rate. The display power

consumption problem is compounded by the fact that even if there

is little or no change on the screen the platform has to generate

and send the entire frame during refresh cycle. In order to

improve the energy efficiency of display architecture in modern

platforms, it might be meaningful to understand the behavior of

the display sub-system from generation to delivery of frames for

optimizing the pipeline for power.

The display sub-system on PC platforms consists of a Panel,

Framebuffer (FB) in main/graphics memory, Display timing

controller (DTC), display link, backlight inverter and lamp.

Though the backlight lamp and inverter consume the major

fraction of power in the sub-system, the power consumption is can

be considered to be relatively constant as long as the display is

active.

Bhowmik and Brennan [1] have discussed methods of reducing

the backlight power and adjusting the brightness of the display in

accordance with the framebuffer brightness and ambient light in

Intel platforms. Choi et.al.[2] recommend adjusting the duty cycle

of refresh to save 19% of the display power on the FB and data

bus along with other hardware techniques for backlight power

management. Shim et.al. [3] proposed FB compression as a

technique to reduce the memory accesses to save power on

displays. Ranganathan et.al.[4] collected statistics of the

percentage of the window of focus and this information can be

used to dim background area to save backlight power. Though the

authors have proposed different strategies to save power on the

sub-system, understanding the nature of the screen updates and its

impact on the display data traffic will be fundamental to

efficiently utilize the power management parameters in the

pipeline.

MOTION

ANALYSIS BY SW

SW

APPLICATIONS
CPU/ GPU

FRAMEBUFFER

COMPUTING

DEVICE

DISPLAY

PANEL

MOTION

ANALYSIS

BY HW

Figure 1. Characterization environment.

In this paper, we characterize the display contents under diverse

workloads to evaluate the screen updates and the frequency of

these updates to the display.

Our contribution in this paper includes:

 Display characterization [Sec. 3]

 Analysis of motion with timing and spatial method [Sec. 4]

 Potential methods to improve efficiency of display systems

[Sec. 5]

2. Display System
Display pipeline consists of two components: computing device

(CPU/GPU) and display sub-system. Computing device generates

and writes the display contents to the FB. The DTC in the display

sub-system reads a set of pixels from the FB at a time and

transfers these contents to the display panel at a fixed rate defined

by the pixel clock of the panel. In traditional displays, even if the

computing device doesn't update the FB, DTC will fetch the FB

contents and transmit the FB data to the panel. The panel will

sustain the screen contents for a certain time only and at the end

of its one frame display time, an interrupt will be generated

(VBlank) to the DTC to fetch the next frame to panel. In modern

computer platforms, this process will repeat as long as the display

is active.

Typically, there are static regions and images in computer display

contents. Many applications have large sections of static regions

and static images in a screen. Simple movement of the cursor for

example, even though only the area equivalent to cursor changes

in the frame buffer, typical display subsystem generates screen

size of entire screen and transports them to the display clients. A

video is made up of series of images called frames and for

displaying videos, the computing device generates frames and

sends them to display panels at a certain rate. This rate is called

frame rate and its unit is frame-per-second (FPS).

Similar to desktop contents even for videos, not all the video

contents change with every frame as a new frame with different

contents will be generated only every n frames depending on the

FPS number. We discuss further in the following sections, our

setup, the data collected and how this data can be useful to

optimize the display pipeline for power.

P-91 / K. Han

1444 • SID 11 DIGEST ISSN 0097-966X/11/4203-1444-$1.00 © 2011 SID

3. Profiling Method

3.1. Measurement environment
Display profiling data is dependent on measurement environment

including software applications and hardware configuration. Some

of the standard benchmarks programs such as MobileMark [5] and

SYSMark [6] run for user independent applications. Some random

mouse movement benchmarks are dependent on the user

applications. The Benchmarks used for the characterization are

listed in Table 1.

These applications ran on a 2.983 GHz Intel Core 2 CPU. We

have used two independent mechanisms to capture the updates to

the screen contents: an external FPGA and a Software (SW)

mechanism and the setup of these entities are shown in Figure 1.

The FPGA hardware intercepts the computer video output and

captures the frames at the rate of transmission, and compares the

current frame with the previous frame stored in the local memory

in FPGA system. The FPGA hardware counts the pixel changes

between the two frames at the different granularity such as the

pixel level, macro-block level or scan line level.

The SW mechanism leverages the existing infrastructure available

called Damage Extension on X Window environment to track the

changes on the screen. We modified the Linux kernel Direct

Rendering Manager and Video driver to track the screen updates.

The Software mechanism also produces the outputs of screen

changes at the granularity of pixel, macro-block and scan line as

explained below.

A scan line is one line in the frame and usually the horizontal line

in display. If the same scan line is different between current and

previous frame then it is called motion scan line (MSL).

Macroblock (MB) represents a tile of 16-by-16 pixels [7] and if

the same MB is different between current and previous frame is

called motion MB (MMB). Pixel, which is different between

current and previous frame at the same location, is called motion

pixel (MP).

The percentage of MPs in frames gives the best indication of

motion activity in the current frame, followed by MMB over

MSL.

3.2. Analysis
This section shows three different analyses: motion frame, motion

timing and comparison of data between HW and SW

environments. Motion frame analysis answers to the questions of

how many frames are really different and how much of a region is

different between frames. Motion timing data shows how often

the updates happen and comparison of data between the setups

proves the validity of the methods used to obtain the data. For

motion frame and motion timing analysis, HW data is used for

analysis due to benchmark OS dependencies.

3.2.1. Motion Frame Analysis
 Figure 2 shows the motion frames on the benchmarks.

MobileMark 2007 has low motion frame rate since this

benchmark has lots of display idle period. 3D animation video

playback benchmarks shows motion frames differ based on the

decoder SW. Even though the video source decoded at 24 frame-

per-second rate, some decoder SW output shows higher frame rate

than original source.

Table 1. Benchmark frame samples.

Benchmarks Total Frame Samping
Duration

Mobile Mark 2007 434669 7244

SysMark 3D 39588 660

SysMark E-Learning 54674 911

SysMark Productivity 33316 555

SysMark Video Creation 76800 1280

3D animation (QuickTime) 39367 656

3D animation (VLC Player) 39302 656

Random Mouse Moves 2879 48

Web browsing suite 5950 99

Figure 2. Motion frames percentage in benchmarks.

The Random Mouse Move (RMM) has the high number of

motion frame on average since mouse cursor always moves in this

benchmark.

Motion frame analysis in isolation only provides one dimension of

the frame updates information as the percentage of change within

these motion frames will also be needed to understand the impact

of these updates on display data traffic. From Figure 3 it is seen

that for all the benchmarks executed there is less than 50% change

in motion frames. Standard benchmark programs (MobileMark

2007 and SysMark) show less than 20% of MSL, less than 8% of

MMB and 3% of MP in motion frames. For the 3D animation

playback, 42% of MSL, 33% of MMB, and 20% of MP are

changed in the motion frames and these percentages could change

depending on configuration such full screen mode. Though RMM

benchmark shows the most motion frame updates amongst all the

benchmarks, the actual percentage of change within these motion

frames is minor due to the small cursor size.

Average of motion details over entire frame rather than in motion

frames is a meaningful indicator of the significance of updates on

the workload. Table 2 shows the percentage of motion in entire

frames which include motion frames and non-motion frames. The

Random Mouse Move benchmark shows the low percentage of

motion over the entire frame due to small update area. The 3D

animation video playback show an average of 10% of MP from

entire frames, while the rest of the benchmarks show less than 1%

of MP in entire frames.

P-91 / K. Han

SID 11 DIGEST • 1445

Table 2. Percentage of motion in entire frames (ML: Motion

Scanline, MMB:Motion Macroblock, MP:Motion Pixel).

Benchmarks MSL (%) MMB (%) MP(%)

Mobile Mark 2007 0.52 0.18 0.08

SysMark 3D 1.05 0.08 0.04

SysMark E-Learning 1.24 0.28 0.17

SysMark Productivity 4.15 1.81 0.84

SysMark Video Creation 1.90 0.74 0.53

3D animation (QuickTime) 26.93 21.89 12.73

3D animation (VLC Player) 16.79 13.58 8.62

Random Mouse Moves 3.85 0.21 0.06

Web browsing suite 1.40 0.60 0.30

Figure 3. Percentage of motions in motion frames (MSL:

Motion scan line, MMB: Motion Macro-Block, MP: Motion

Pixel).

3.2.2. Motion Timing Analysis
Time between motion frames is another important factor in

display characterization. Even though some content creates

motions, the distribution of the time between motion frames can

be different. Figure 4 shows the distribution of the time between

motion frames. In 3D animation video playback benchmark, the

time between motion frames is less than 3 frames. Mobile Mark

2007 (MM07) test shows the bi-modal distribution in the

histogram since the MM07 benchmark program has long pause

periods with only clock changes.

Mean and variance of the time between motion frames are

parameters used to characterize the distribution. Table 3 shows

average and variance values of the time between motion frame

and consecutive motion frames on the workloads. The average of

the time between motion frames are varying from 0.022 to 0.216

second which corresponds about 1 to 13 frames. This implies that

1 to 13 frames are consecutively identical on average. New

display architecture can use previous frames for next frame during

this period, thereby saving power in platform.

Figure 5 shows the histogram of the consecutive motion frame in

some benchmarks. From Table 3, the average of the consecutive

motion frames vary from 0.021 to 0.799 second which

corresponds to around 1 to 48 frames of consecutive changes.

Table 3. Statistics of the time between motion frames and

consecutive motion frames.

Benchmarks Time between

motion frames (sec)

Consecutive motion

frames (sec)

Average Variance Average Variance

Mobile Mark 2007 0.216 16.980 0.021 0.039

SysMark 3D 0.064 49.330 0.020 0.008

SysMark E-Learning 0.071 15.309 0.024 0.025

SysMark Productivity 0.103 16.064 0.032 0.238

SysMark Video
Creation

0.097 7.644 0.024 0.027

3D animation

(QuickTime)

0.022 0.052 0.041 0.035

3D animation (VLC

Player)

0.041 0.357 0.028 0.004

Random Mouse

Moves

0.049 0.197 0.799 121.194

Web browsing suite 0.151 29.674 0.049 583.059

Figure 4. Histogram of the time between motion frames in (a)

random mouse move, (b) MobileMark2007, (c) SysMark

Productivity, (d) 3D Animation with Quicktime Player (Unit:

millisecond).

In the RMM case, the time of consecutive motion frames is very

high compared to other benchmarks since the mouse continuously

moved. In other benchmarks, consecutive motion time takes a

couple of frames.

3.2.3. Hardware and Software Data Analysis
We have developed an independent mechanism using SW to track

the screen updates and to ensure the validity of the data collected

by both HW and SW setups, we executed a web browsing

workload on both the setups simultaneously. The motion frame

and timing data collected using the setups are shown in Table 4.

The web browsing workload is a custom generated web script

loading 14 web pages simulating the experience of web browsing.

SW setup shows motion frames of 22.6% and HW data was

measured to be 20.7% showing a difference of less than 3%

between the setups indicating the validity of the data and accuracy

of the models. The variation between the software and hardware

P-91 / K. Han

1446 • SID 11 DIGEST

Table 4. Statistics comparison between HW and SW characterization environment on web browsing suite.

Characterization

Method

Motion Frames (%) Idle Frames (%) In Motion Frames In Entire Frames

MSL% MMB % MP% MSL% MMB% MP%

SW Based 22.6 77.4 20.6 14.6 13.5 4.7 3.1 3.3

HW Based 20.7 79.3 6.8 2.8 1.4 1.4 0.6 0.3

Difference 1.9 1.9 13.7 11.8 12.1 3.2 2.5 3.0

Figure 5. Histogram of consecutive motion frames in (a)

random mouse move, (b) MobileMark2007, (c) SysMark

Productivity, (d) 3D Animation with Quicktime Player (Unit:

millisecond).

data for the motion frame analysis could be due to approximations

in the SW to create an encompassing rectangle of all updates in a

frame while the hardware accurately computes only the exact

changes within these updates.

4. Discussion
The results show that only a small fraction of the screen is

modified under most scenarios and though the distribution of

motion frames differs based on the workload, there could be

meaningful idleness between the motion frames.

Display subsystem architecture can be redesigned to leverage the

redundancy shown in the analysis. Table 2 shows that for active

web browsing scenarios have less than 1% pixel change on

average. A new architecture which transports only the updated

data to panel can reduce the display related activities and save

energy in the platform [8].

When the display sub-system is designed to transport to only

frame updates, it could result in performance and power benefit in

the sub-system. First of all, display data sent to the panel is

reduced by a big factor and could also result in power

consumption on the DTC and display link. As the DTC will also

have less number of accesses to FB memory, the memory bound

workload could have improved performance.

It is challenging to find the updates before the data are sent to the

panel. Han [9] proposed a detection method to detect changes by

using checksum. Software can be one of the methods to detect the

changes as it is more flexible to configure for the requirements.

Even though it shows more percentages of changes within a

motion frame, the software detection can be further optimized to

detect the exact changes rather than an encompassing rectangle.

5. Conclusion
Using the FPGA and Software, motion updates are analyzed in a

computer display system. Results show that a display system

transports lots of duplicated data to the panel. Some applications

have less than 1% of motion pixels. The 99% pixel data is same as

the previous frame. This result supports the research to develop

new display system architecture to efficiently transport display

frames to the panel in order to achieve low power and improve

performance in computer displays.

6. References
[1] A. Bhowmik and R. Brennan, “System-level display power

reduction technologies for portable computing and commu-

nications devices,” Proc. IEEE International Conference on

Portable Information Devices, 1–5 (2007).

[2] I. Choi, H. Shim, and N. Chang, “Low-power color TFT

LCD display for hand-held embedded systems,” Proc. Inter-

national Symposium on Low Power Electronics and Design,

112–117 (2002).

[3] H. Shim, N. Chang, and M. Pedram, “A compressed frame

buffer to reduce display power consumption in mobile sys-

tems,” Proc. of the ASP-DAC, 819–824 (2004).

[4] P. Ranganathan, E. Geelhoed, M. Manahan, and K. Nicholas,

“Energy-aware user interfaces and energy-adaptive dis-

plays,” IEEE Computer 39, 31–38(2006).

[5] MobileMark 2007,WWW Document,(http://www.bapco-

.com/products/mobilemark2007)

[6] SysMark 2007. WWW Document, (http://www.bapco-
.com/products/sysmark2007preview/)

[7] I. Richardson, H.264 and MPEG-4 Video Compression.

(John Wiley and Sons, 2004).

[8] L. Hollevoet, A. Dewilde, K. Denolf, F. Catthoor, and F.

Louagie, “A power optimized display memory organization

for handheld user terminals,” Design, Automation and Test

in Europe Conference and Exhibition, 3, 294 – 299 (2004).

[9] K. Han, Z. Fang, P. Diefenbaugh, R. Forand, R. Iyer, and D.

Newell, “Using checksum to reduce power consumption of

display systems for low-motion content,” Proc. IEEE Inter-

national Conference on Computer Design, 47–53 (2009).

P-91 / K. Han

SID 11 DIGEST • 1447

