
Using Checksum to Reduce Power Consumption of Display Systems for
Low-Motion Content

Kyungtae Han, Zhen Fang, Paul Diefenbaugh, Richard Forand, Ravi R. Iyer, Donald Newell
Intel Labs, Hillsboro, OR 97124

{kyungtae.han, zhen.fang, paul.s.diefenbaugh, richard.a.forand, ravishankar.iyer, donald.newell}@intel.com

Abstract— Power consumption of the display subsytem has
been a relatively less explored area compared to other com-
ponents of a mobile device including computing, storage, and
networking units, although the former often constitutes one
of the most power-hungry portions of the system. Typical
applications on a mobile device such as web browsing and text
editing tend to have rather static image content; each frame
hardly changes from the previous one. Efficiently detecting
and handling no-motion scenarios is thus critical to extend the
battery life. This paper focuses on image change detection.

We propose to use checksum to detect image changes. Specifi-
cally, CRC hardware is used to optimize the power consumption
of 1) refresh of a local display and 2) data compression for
wireless remote display. Compared with a traditional, pixel-by-
pixel comparison approach, using checksum for image change
detection is not only fast, but also reduces accesses to the frame
buffer, resulting in significant power savings. We have built a
FPGA prototype to verify that CRC can capture image changes
well enough to ensure a “visually lossless” quality.

I. BACKGROUND

For battery-powered platforms, while much research effort
of the computer architecture community has been focused
on reducing the power consumption of the microprocessor,
the caches, system memory, and the network, relatively less
attention has been devoted to the display subsystem, although
the latter actually constitutes one of the most power-hungry
portions of the platform [1], [2]. In this paper, we propose a
novel mechanism that can optimize the power consumption
of two representative display subsystems: 1) a local display
2) a wireless remote display.

A. Local display refresh

Mobile platforms are typically used for web browsing,
email, document viewing, etc. In these usage cases, the
screen images are usually rather static [3]; most of the frames
are identical to the preceding ones. However, in order to
hold images stable on the screen, current display controllers
still have to refresh the display at a fixed rate. Pixel data
are fetched across the LCD interface link from the frame
buffer which is typically part of system DRAM. Frame buffer
accesses and LCD interface link transfers caused by display
refresh constitute a big portion of the system power on a
mobile platform [4].

Instead of fetching pixel data from the system frame
buffer, the display controller could refresh a panel through
a local frame buffer to save power consumption in the host

when the images to be displayed are same as the image which
has already been displayed and stored in the local buffer [4],
[5]. Fig. 1 shows the system organization of such a LCD
display system. Dotted lines denote the components whose
power could be saved at the system level if we can set the
LCD to self-refresh mode. The controller can set the self-
refresh signal only when the system is inactive for a long
time, e.g., after no activity from the keyboard and mouse
for 2 minutes. With self-refresh turned off, huge amount of
data are still transferred to the LCD 60 frames/second, even
though most of these frames are identical to each other.

Researchers have been trying to improve energy efficiency
of the display system by dimming the LCD panel backlight
[6], by dimming the screen portions that the user is not
focusing on [7], by reducing power consumption of the
inactive windows [8], and by adaptively changing the refresh
rates and color depth [9], among many other innovations. Our
work is orthogonal to these techniques.

B. Wireless Remote Display and Display Content Compres-
sion

To compensate for the small screen of mobile internet
devices (MIDs), high-definition wireless remote display is
emerging as a promising solution. In this usage model,
the application runs on a user’s handheld device, while the
picture frames are sent to a large intelligent display nearby
through wireless links.

There are different mechanisms to intercept and transfer
command/data from the host (i.e., sender) to the display (i.e.,
client, or receiver). Screen scraping is one of them. Instead
of sending commands for the client to re-draw the graphics,
it sends pre-rendered frames from the application server to
the client display. Because of its advantage in rendering 3D
frames on a thin client, the screen scraping approach has
been used by a number of cross-platform remote display
tools, such as VNC [10]. There are extensions to the basic
“pixel scan” approach of VNC. For example, Microsoft RDP
[11] and Citrix ICA [12] employ more complex protocols to
reduce bit rate and enable special visual effects. Although
these advanced protocols have obvious advantages for tra-
ditional PC-based remote terminals, we believe that they
are less likely to become standards for thin display clients
because they would require rather complex functionalities in
the displays.

978-1-4244-5028-2/09/$25.00 ©2009 IEEE 47

System
DRAM

System FB

Gfx

LCD
controller

self-refresh
enable

LCD panel

CPU

Memory controller

RGB data

address

Local FB

Fig. 1. Diagram of a Display System with a Local Frame Buffer

Frame buffer

X server/Win
manager/3D driver

Application

Remote Display
Interface:
encoding

Wireless
network

MPEG/H.264
decoding

Frame
buffer

LCD
controller

We will optimize this part

(Thin display client)

Fig. 2. Screen Scraping Based Wireless Remote Display

The transmission speed requirement for HD display is pro-
hibitively high for current and near-future radio on a mobile
device. For example, 1920x1080 pixels @ 24 frames/second,
24 bits/pixel would need over 1Gb/s of sustained wireless
bandwidth from the MID to the display. Some form of data
compression is necessary to reduce both network bandwidth
requirement and transmission radio power. Most intelli-
gent displays in the future are expected to have hardware
MPEG/H.264 decoders for video playback. At the same
time, camera, together with video encoding accelerators,
will just be standard components in MIDs. Availability of
video encoding hardware provides a handy data compression
utility: motion estimation of MPEG and H.264 is designed
to significantly reduce temporal redundancy between two
frames, and can be used for wireless remote display data
compression. Fig. 2 shows the baseline wireless remote
display system.

Motion estimation (ME) is an inter-frame predictive cod-
ing technique used to eliminate the large amount of temporal
redundancy that exists between video frames. Suppose a
reference frame has been encoded and we are trying to
encode the current frame. Instead of directly storing and
transmitting every pixel, MPEG/H.264 only transmit the
“delta” between the current macroblock (MB, 16x16 pixels)
and an MB in an earlier frame [13], [14]. ME consists of
two steps: 1) finding a MB in an earlier frame that is most
similar to the current MB; 2) generate a pointer and a 16x16
matrix as the delta than the reference MB. The similarity
test used in most encoders is Sum-of-Absolute-Differences,
or SAD. The pointer, called motion vector (MV), gives the
relative coordinates between the MBs. The 16x16 residual
matrix gives the difference between the reference MB and
current MB. The first step is the most time-consuming step
in MPEG and H.264 encoding. The computational intensity
of the similarity test is perhaps the biggest hurdle to wide
deployment of real-time, low-cost H.264 hardware encoder.

For wireless remote display, a decent pixel search for ME
alone can violate the delay target. As a result, we can only
afford trying one macroblock in the reference frame. This
candidate MB is the MB in the reference frame with the same
coordinates as the current MB that is being encoded. If the
current MB in the current frame is identical to the candidate
MB in the reference frame, we encode the current MB as
a P- or B-macroblock to exploit the temporal redundancy.
Otherwise, encode the current MB as an I-macroblock, only
exploiting intra-MB data compression. Except for usage
cases like gaming and movie playback, most portions of the
screen content is usually very static. Most MBs will end up
being encoded as P- or B-macroblocks using just a pointer to
the same MB in its reference frame and an all-zero residual
matrix. This case can be encoded very efficiently in MPEG
and H.264, i.e., achieving excellent compression ratios.

However, to decide that a current MB has no motion
from the reference frame, pixel-by-pixel comparisons have
to be performed in MPEG and H.264 search functions.
This entails frequent accesses to the frame buffer, which
is usually in DRAM. In an aggressively power-optimized
DRAM system of a handheld device, maximum residency in
DRAM standby and self-refresh modes is essential to save
energy. Frequent frame buffer accesses will cause the DRAM
ranks to constantly wake up from low-power modes.

C. Checksum/CRC

Cyclic redundancy check [15] is a type of data integrity
checksum function that takes as input a data stream of any
length and produces as output a value of a certain fixed
size. Usually checksums, including CRC, are used to detect
accidental alteration of data during transmission or storage.
An n-bit CRC, applied to a data block of arbitrary length,
can detect any single error burst that is not longer than n bits
(i.e., any single alteration that spans no more than n bits of
the data), and will detect a fraction 1−2−n all longer error
bursts. CRCs are very simple to implement in hardware. For

48

example, we implemented 8-bit CRC with 52 gates. Besides
CRC, many other hash and checksum functions have similar
properties in their ability to capture random bit changes. For
simplicity, for the rest of the paper we assume that CRC is
used as the checksum function.

II. USING CHECKSUM TO DETECT CHANGES BETWEEN
FRAMES

Given two blocks of data A and B, generate the CRC code
of them, CRCA and CRCB. If the exclusive-OR value between
CRCA and CRCB is equal to zero, we know that there is high
probability that A and B are identical. Otherwise, we know
that the two data blocks are different.

Let A and B be two successive frames that are sent to the
LCD panel, then this CRC code check can serve as an image
change detector between frames. Section II-A discusses this
embodiment of the idea.

Let A and B be two macroblocks in motion estimation, one
in the current frame and the other in the reference frame, then
the CRC code check can serve as an zero-motion detector
between macroblocks. We elaborate on this application of
the idea in Section II-B.

Note that in this paper, we are not proposing any inno-
vative low-power modes of the display controller, display
panel, or any new video compression algorithm. Rather, the
contribution is a novel image change detection technique that
enables better utilization of these existing low-power modes
and data compression algorithms. Though in this paper the
output of CRC unit is used to control self-refresh mode
entry/exit and feed into motion estimation function, it can
be used for other purposes, albeit with different performance
and power implications. For example, if we have detected
that M out of N successive frames are identical to their
previous ones, we could lower the display refresh rate from
60Hz to 30Hz, like in [9].

A. Stream Image Change Detector used for Display Refresh

The proposed Stream Image Change Detector has three
components: CRC Generator, Delay, and CRC Checker,
shown in Fig. 3. Frame pixel data stream through the CRC
generator at the pixel clock rate. The CRC generator block
generates one value for each frame at the frame rate which
is same as the vertical synchronization (VSYNC) clock. The
Delay block stores the generated CRC value so that it can be
compared against the CRC value of the next frame. The CRC
checker XORs the stored CRC value in the Delay block and
the new CRC value for the current frame. The CRC checker
generates the logical value of zero, when both CRCs are
equal. Otherwise, a logical value of one is given, indicating
that the current frame is different than the previous one.
The CRC generator is reset at every vsync signal to clean
internal values. The 1-bit change/no-change verdict serves as
the display self refresh-enable signal to the LCD controller.
After a no-change signal is asserted by the CRC checker, the
LCD controller stops fetching data from the system frame

buffer. It goes back to normal refresh mode when the CRC
checker de-asserts the no-change signal. The stream image
change detector can detect image changes very efficiently
and at extremely low cost.
• It does not throttle the throughput of the display; it only

introduces a few pixels worth of initial delay.
• The silicon cost and power consumption of the extra

hardware is negligible.
• It does not require any change to existing graphics

driver, graphics engine, frame buffer, or the LCD con-
troller.

Compared against using pixel-wise comparisons, the most
important benefit of this work is that it reduces frame
buffer accesses caused by the unnecessary display refreshes,
enabling the DRAM ranks to stay longer in lower-power
modes such as standby or self-refresh. For static image
contents, eliminating most of the display refresh-induced
frame buffer accesses helps to significantly increase DRAM
devices’ residency in low power modes, which can easily
have 3X to 10X lower power consumption than an idle
standy mode [4]. Secondary benefits include power savings
from reduced activities on interconnects such as FSB and
IO busses. These power saving opportunities are denoted as
dotted lines in Fig. 3.

B. Macroblock-Level Zero-Motion Detector used for Wire-
less Remote Display Data Compression

We propose to use checksum to detect zero-motion be-
tween the current MB that is being encoded and the same
MB in the previous frame. This is before motion vectors
are derived. If the checksum comparison indicates zero-
motion between both MBs, then we literally eliminate the
high cost of MB search. This can be thought of as an
optimization to the early termination mechanism of existing
motion estimation algorithms.

3Emerging Platforms Lab

Generate CRC for
current MB

CRC of
same MB in
last frame

Zero-motion
detected

Motion detected. Encode
current MB as I-block

==?

N

Y

from X server / win
manager / 3D driver

Current MB to
frame buffer

Fig. 4. Zero-Motion Detection Using Hardware CRC

Fig. 4 shows the basic flow of the algorithm. A CRC is
calculated by hardware for each MB as it is written to frame
buffer. Note that we do not fetch pixels from frame buffer
in order to compute their CRC values. Rather, the pixel data
are intercepted, e.g., from the 3D driver. The CRC value
is stored in on-chip memory, and at the same time XOR-
ed against the CRC value of the same MB of the previous

49

System
DRAM

System
FB

Gfx
CPU

Memory controller

CRC
generator

Delay
CRC

checker

vsyncpixel
clock

vsync

LCD
controller

Self-
refresh
enable

LCD panel

Stream Image Change Detector

Local FB

Fig. 3. Stream Image Change Detection Using Hardware CRC

X server / window
manager / 3D driver

SRAM

CRC
Generation

Baseline encoding
process

U, V for one blk

RGB-to-YUV

Y, U, V for
one blk CRC throttle

Q D Q D DQ Q D

CRC(3) CRC(2) CRC(1) CRC(0)

Pixel
data in

throttle

clock

Example CRC-4 Implementation for
X4 + X2 +X +1

to frame buffer XOR XOR

XOR

CRC
compare

Fig. 5. A Hardware View of the CRC Unit-Augmented Zero-Motion Detector

frame in time, loaded from on-chip memory. Depending on
the XOR result, we take one of two actions –
• XOR returns 0: This indicates that both MBs are iden-

tical. We derive a motion vector of (0, 0) and all-zero
residual matrix for the current MB.

• XOR returns 1: There is difference (i.e., motion) be-
tween the two blocks. We need to start the baseline
encoding process.

CRC values are compared between two adjacent frames
in time, regardless of whether the previous frame is an I-
frame, a P-frame, or a B-frame. The on-chip memory size
is proportional to the supported picture resolution. For ex-
ample, supporting 1600x1200-pixel pictures requires 7.3KB
(=1600x1200/256) of SRAM storage. SRAM of this size
consumes only a fraction of DRAM power. Note that the
original frame data would require an impractical SRAM
size (e.g., multi-M bytes). Eliminating the need to retrieve
reference frame pixel data from DRAM helps to achieve
significant power savings.

Partial CRC
To further reduce the CRC calculation overhead, we can

ignore some of pixel components between the previous and
current frame. For example, when encoding from 4:2:0 YUV,
data ratio between Y (the brightness) and U/V components
(the colors) is 2:1. If we only use the U and V components
and skip checking Y components, the amount of CRC com-
putation and the SRAM storage will both be cut to only 1/3
of the basic method. The intuition behind this optimization is
that whenever a pixel changes, all the three values, Y, U and
V, change. Emulation is work in progress to prove that from
a human perception perspective, partial CRCs can capture

motion as confidently as full-coverage CRCs.
CRC Throttling
In the case when XOR returns 1, CRC adds an extra

amount of computation and does not generate any benefit.
To mitigate this overhead, we can introduce some CRC
throttling mechanism that turns the CRC unit on and off,
adapting to the amount of motion in the video. One possible
implementation is to turn off CRC after the total number
of XOR = 0 for R successive frames is no more than S,
and turn on CRC after a (0, 0) motion vector has been
generated for T successive frames. With this optimization,
motion-rich contents will cause the CRC unit to be turned
off after the application starts. One concept that we would
like to clarify is that random noise from the camera, like the
subtle perturbation from lighting changes in the environment.
By contrast, pictures generated by the graphics card do not
have noise; even in games with fast-moving objects, majority
of the macroblocks in successive frames are identical, and
can benefit from our fast zero-motion detector.

Fig. 5 contains more detailed information on the CRC-
augmented video encoder. Bold lines denote new hardware.

Using CRC instead of the conventional pixel-by-pixel
comparison approach to detect changes in the frames has
advantages in power consumption and encoding speed.

DRAM Power
Power savings primarily come from reduced frame buffer

accesses. Pixel-by-pixel comparisons need to load pixel data
of the reference frame from the system frame buffer, while
the proposed CRC-based zero-motion detector only need to
fetch CRC codes from SRAM. This is illustrated in Fig. 6.
Assuming that an average P% of the whole frames do not

50

change, and that in each of the 1−P% of the frames with
motion in them, Q% of the MBs actually changed, we can
extrapolate a zero-motion percentage of 1− (1−P%)×Q%
on a macroblock basis. E.g., if P = 60, Q = 30, then 88% of
the MBs would be zero-motion MBs. Frame buffer accesses
to DRAM will thus be drastically reduced. During the
intervals when there is no mouse movement or keyboard
typing, DRAM ranks can be put to a low-power mode,
resulting in significant DRAM power savings.

Frame n /
MB n

Frame n-1
/ MB n-1

time

compare

Frame n+1
/ MB n+1

compare

(a) Pixel-by-pixel comparison: Each pixel fetched from DRAM twice

Frame n /
MB n

Frame n-1
/ MB n-1

compare

Frame n+1
/ MB n+1

compare

(b) Proposed method: Each pixel fetched from DRAM once

CRC1 CRC2 CRC3

(in DRAM)

(in DRAM)

(in SRAM)

Fig. 6. Using CRC Code Obviates the Need to Fetch Reference Frame
Pixels from DRAM

Encoding Speed
The CRC value is generated when pixels are written

to the frame buffer. By contrast, traditional pixel-by-pixel
comparisons add to the critical path of encoding, since pixel
data of the reference frame would have to be fetched from
the frame buffer first.

C. Periodically Overwriting Checksum Results for Failure
Recovery

There is a slight possibility that motion between two
blocks of data (a block being one frame or a 16x16 mac-
roblock) be missed by short CRCs. In our experiments
(explained in next section), we did not really observe oc-
currences of human-perceivable loss of image quality. The
reason is that under normal scenarios, even if CRC fails to
capture an image content change, changes between subse-
quent frames quickly re-establish correctness of the CRC
results. For example, displaying one stale macroblock in one
frame out of a 30FPS video stream is hardly perceivable to
human eyes at all. However, for pathological combination
of image contents or frame sequences, failure of CRC-based
image change detection could result in repeated rendering
of an obsolete image. To overcome this problem, we can
periodically de-assert the CRC-based image change detection
output, and thus force it into an “image changed” case. For

Effective FPS

Power
consumption

baseline

Ima
ge
cha
nge
 –

aw
are
 dis
pla
y

0 60

Fig. 7. Power Consumption of the Display System as a Function of the
Effective Frames Per Second

example, the period for checksum cancellation could be 3
seconds after a “no image change” result is generated. By
doing this, we guarantee that the display system can recover
from an incorrect state.

III. PROTOTYPING AND EVALUATION

A. Prototype
We built a prototype using Altera FPGA and a 1280x800

AUO LCD display in order to prove our claim that CRC
can capture image changes well. The system organization
is similar to the one shown in Fig. 3. We used whole-
frame CRC codes to check if two successive frames are
identical. That is, one CRC value is generated per frame
of 1280x800 resolution. Even if one single pixel changes
between two successive frames, the CRC check will return
“image changed”. If CRC check returns “no change”, the
LCD controller switches to a low-power mode and stops
fetching frame data from the frame buffer, shown in Fig. 5.

A demo can be downloaded from URL
http://www.cs.utah.edu/∼zfang/CRC demo.wmv. In the
prototype, we inserted our CRC-based Stream Image
Change Detector (SICD) in the LCD-host interface on the
test board on the left. If SICD detects that there is no image
change, it signals the LCD controller to lower the panel
refresh rate from 60Hz to 30Hz. The laptop screen on the
right graphically shows the power consumption of the LCD
panel. In this demo, at first SICD is turned off, so on the
laptop screen we see a full power consumption. Then the
user manually turns on SICD on the test board. When there
is no image change on the LCD panel, LCD panel refresh
drops to 30Hz, resulting in much lower power consumption.
When the user starts to move the mouse, normal display
refresh resumes. Utilizing an existing variable refresh rate
technique[9], the prototype shows the effectiveness of CRC
in detecting motion in images.

B. Quantitative Evaluation
Fig. 7 qualitatively illustrates the relationship between dis-

play system’s power consumption and Effective Frames Per
Sceond (EFPS). Intuitively, EFPS represents the amount of
frame changes in the image sequence. Next, we quantitatively
evaluate the power savings of the proposed mechanism.

The total display system power can be expressed as

PDRAMdevice +PDRAMbus +PDispLocalFrameBu f f er+
PMemoryController +PLCDcontroller +Pothers

(1)

51

TABLE I
POWER CONSUMPTION OF KEY COMPONENTS IN A HYPOTHETICAL

BATTERY-POWERED DEVICE

Module Name Power (mW)
System DRAM active + standby 350

System DRAM powerdown 105
System DRAM busses leakage 40 + dynamic 40

Memory controller leakage 192 + dynamic 48
LCD controller interface link leakage 100 + dynamic 140

Display local frame buffer 80 (always full power)
CRC-based image change detector 20 (always full power)

FSB, IO busses, LCD backlight always full power

in which most of the items consist of two components: active
and idle power. Use η to denote percentage of time that a
component is in idle state, we have

P = (1−η)×Pactive +η×Pidle (2)

Assuming that aggressive power control techniques are
employed, Pidle roughly equals leakage power for logics
and wires, and “powerdown” power for DRAM devices
1. The difference between Pactive and Pidle is mostly leak-
age/powerdown power. That is, Pactive=Pleakage +Pdynamic.

For mostly-static display contents, our proposed mecha-
nism can help clock gating utilities to save majority of the
dynamic power, and help the memory conroller to maxi-
mize DRAM devices’ residency in the powerdown mode.
As a first-order approximation, total power savings of the
proposed work in the display system is

Pbaseline−Poptimized =
η× (PDRAMpowerdown +PDRAMbusDynamic+
PMemoryControllerDynamic +PLCDcontrollerDynamic)
−PDispLocalFrameBu f f er−PCRCoverhead

(3)

where η is the average fraction of frame content that is not
changing.

Table I contains power consumption numbers that we use
as parameters in our power savings estimate. These param-
eters are primarily compiled from a number of publications
including research papers [9], [16], [17], DRAM device
vendors’ data sheets [18], [19], [20] and low-power system
design guides [4]. In our estimate of power saving benefits,
we do not consider power consumption reduction in FSB,
IO interconnect and LCD panel backlight when the display
is in idle modes. We will use the parameters in Table I to
drive Equation(3), based on η that we measured for each
application, presented next.

We extensively tested a large number of interactive and
non-interactive applications. These include video creation,

1Different DRAM device vendors use different terms and define differ-
ent power states for the DRAM devices and peripheral circuitry. In the
powerdown mode of this paper, we assume that all the IO buffers, sense
amplifiers and row/column decoders in the DRAM device are deactivated
but the internal PLL is on.

office productivity, E-learning, 3D modeling, Mobile Pro-
ductivity, playback of an animated DVD movie, and active
web browsing on cnn.com. Except for web browing, these
applications were sampled from standard bencmarks such as
SysMark2007 [21] and MobileMark2007 [22].

0

50

100

150

200

250

300

350

Video

Creation

Office

Productivity

E-Learning 3D Modeling Mobile

Productivity

movie

"Elephant

Dream"

CNN.com

active

browsing

P
o

w
e
r

s
a
v
in

g
s
 (

m
W

)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

%
 o

f
n

o
-m

o
ti

o
n

 f
ra

m
e
s
 @

 6
0
 F

P
S

Power savings % of no-motion frames

Fig. 8. Frame Change Characteristics and Estimated Power Savings

Fig. 8 shows the percentage of still frames for each bench-
mark that we measured. Based on the power consumption
parameters in Table I, we projected power savings of using
the frame change detector. The estimate only considered
dynamic power savings, and assumed no leakage power
reduction.

Fig. 9 shows numbers for the percentage of no-change
image content measured at the frame granularity (first bar for
each usage case) and projected at macroblock granularity (the
other three bars for each usage case). The first three usage
cases are standard benchmarks. The last one, “CNN.com
browsing”, is content and network traffic dependent. When
we transmit the MPEG frames at 60 FPS, for example, 27%
of the frames for animated movie “Elephant Dream” have
been measured to be identical to their previous ones, denoted
by the first bar. If we assume that of those frames that have

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

Video

Creation

Office

Productivity

E-Learning 3D Modeling Mobile

Productivity

movie

"Elephant

Dream"

CNN.com

active

browsing

%
 o

f
C

o
n

te
n

t
w

it
h

 N
o

 C
h

a
n

g
e

(1
0
0
%

 =
 i

d
e
n

ti
c
a
l

c
o

n
te

n
t)

% of no-motion frames @ 60 FPS (measured)

MB-level, if % of no-motion MBs in changed frame = 40%

MB-level, if % of no-motion MBs in changed frame = 60%

if % of no-MB-level, motion MBs in changed frame = 80%

Fig. 9. Extrapolated Amount of Motion at Macroblock Level

52

any change in them (i.e., 73% of all frames), 80% of the
16x16 MBs do not change, then at the MB level 94% of
all MBs are identical to their counterparts in the previous
frames. The proposed method would be able to save 94%
of frame buffer accesses when compressing data for the
wireless remote display. Further instrumentation and direct
measurement of power consumption is work in progress.

IV. SUMMARY

We propose and prototype a novel image change detection
method using CRC code. Using CRC code as opposed
to pixel-wise comparison can help to reduce significant
percentage of frame buffer reads, therefore saving DRAM
access power, for typical local display refresh and wireless
remote display data compression. Our prototype verifies that
short CRC codes can capture image changes rather well.
As part of the future work, we plan to experiment with
checksum/hash functions other than CRC, and to investigate
other application of the proposed image change detector.

Acknowledgement
The FPGA prototype and data collection are part of

a larger project in which we work together with other
colleagues including Ajaya Durg, Quang Le, Jeremy Lee,
Alfredo Alvarez and Wayne Proefrock. We thank Yu Dai,
Guoqing Li, Yen-Kuang Chen and Yi-jen Chiu for their help
on wireless remote display and video compression.

REFERENCES

[1] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubra-
manian, “Integrated power management for video streaming to mobile
handheld devices,” in Proc. of ACM Multimedia, 2003, pp. 582–591.

[2] H. Shim and N. Chang, “A compressed frame buffer to reduce display
power consumption in mobile systems,” in Proc. of Asia and South
Pacific Design Automation Conference, 2004, pp. 819–824.

[3] P. Ranganathan, E. Geelhoed, M. Manahan, and K. Nicholas, “Energy-
aware user interfaces and energy-adaptive displays,” IEEE Computer,
vol. 39, pp. 31–38, Mar. 2006.

[4] Microsoft. MSDN library, mobile and embedded development.
[Online]. Available: http://msdn.microsoft.com/en-us/library/aa936209.aspx

[5] L. Brakmo, D. Wallach, and M. Viredaz, “uSleep: A technique for
reducing energy consumption in handheld devices,” in Proc. of Int.
Conf. Mobile Systems, Applications, and Services, 2004, pp. 12–22.

[6] N. Chang, I. Choi, and H. Shim, “DLS: Dynamic backlight luminance
scaling of liquid crystal display,” IEEE Trans. VLSI Syst., vol. 12, pp.
837–846, Aug. 2004.

[7] F. Gatti, A. Acquaviva, L. Benini, and B. Ricco, “Low power control
techniques for TFT LCD displays,” in International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, 2002,
pp. 218–224.

[8] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan, “Energy-adaptive
display system designs for future mobile environments,” in Proc. of
Int. Conf. Mobile Systems, Applications, and Services, 2003, pp. 245–
258.

[9] I. Choi, H. Shim, and N. Chang, “Low-power color TFT LCD display
for handheld embedded systems,” in International Symposium on Low
Power Electronics and Designn, 2002, pp. 112–117.

[10] RealVNC. The RFB protocol, Version 3.8. [Online]. Available:
http://www.realvnc.com/docs/rfbproto.pdf

[11] Microsoft. MSDN library, remote desktop protocol. [Online].
Available: http://msdn.microsoft.com/en-us/library/aa383015.aspx

[12] Citrix. [Online]. Available: http://www.citrix.com
[13] ISO/IEC, “Information technology generic coding of moving pictures

and associated audio information: Video.”

[14] I. Richardson, H.264 and MPEG-4 Video Compression. John Wiley
& Sons, 2004.

[15] P. Peterson and D. Brown, “Cyclic codes for error detection,” in Proc.
of the IRE:49, Jan. 1961, pp. 228–235.

[16] J. B. Fryman, C. M. Huneycutt, H.-H. Lee, K. M. Mackenzie, and
D. E. Schimmel, “Energy-efficient network memory for ubiquitous
devices,” IEEE Micro, vol. 23, pp. 60–70, Sept. 2003.

[17] H. Huang, K. Shin, C. Lefurgy, and T. Keller, “Improving energy
efficiency by making DRAM less randomly accessed,” in International
Symposium on Low Power Electronics and Design, 2005, pp. 393–398.

[18] Micron. Technical note on mobile DRAM power-
saving features and power calculations. [Online]. Available:
http://download.micron.com/pdf/technotes/tn4612.pdf

[19] Elpida. Mobile RAM low-power modes. [Online]. Available:
http://www.elpida.com/en/70nm/70nm mobile.html

[20] Samsung. Technical note on low power mode
for DDR registered DIMM. [Online]. Available:
http://www.samsung.com/global/business/semiconductor/products/dram/downloads/applicationnote/APP 061301.pdf

[21] BAPCO. SysMark 2007. [Online]. Available:
http://www.bapco.com/products/sysmark2007preview/

[22] ——. MobileMark 2007. [Online]. Available:
http://www.bapco.com/products/mobilemark2007/

53

