
Contents

Slide 1 Some DSP Chip History
Slide 2 Other DSP Manufacturers
Slide 3 DSP Applications
Slide 4 TMS320C6701 Evaluation Module (EVM)
Slide 5 TMS320C6701 EVM Features
Slide 6 EVM Stereo Codec Interface
Slide 7 TMS320C6701 Architecture
Slide 8 Main ’C6701 Features
Slide 9 ’C6701 Features (cont.)
Slide 10 Instructions Common to C62x and C67x
Slide 11 Extra Instructions for the C67x
Slide 12 Addressing Modes
Slide 13 TMS320C6701 Memory Map
Slide 14 Parallel Operations
Slide 15 TMS320C6x Pipeline Phases
Slide 16 Pipeline Operation
Slide 17 TI Software Tools
Slide 18 Building Programs
Slide 19 Other Software
Slide 20 First Lab Session
Slide 21 The Code Composer Studio Tutorial
Slide 22 Building Programs from DOS

'

&

$

%

Some DSP Chip History

First Commercial DSP’s

• 1982 – NEC µPD7720

• 1982 – TMS 32010

These chips initially cost around $600. Now cost

less than $1.

Texas Instruments (TI) DSP Family

• Low Cost, Fixed-Point, 16-Bit Word length

Motor control, disk head positioning, control

TMS320C1x, ’C2x, ’C20x, ’C24x

• Power Efficient, Fixed-Point, 16-Bit Words

Wireless phones, modems, VoIP

’C5x, ’C54x, ’C55x

• High Performance DSP’s

Comm Infrastructure, xDSL, Imaging, Video

’C62x (16-bit fixed-point)

’C3x, ’C4x, ’C64x, ’C67x (32-bit

floating-point)

’C8x (multi-cpu)

1

'

&

$

%

Other DSP Manufacturers

Lucent, Motorola, Analog Devices, Rockwell,

Thomson, Fujitsu

Fixed vs. Floating-Point DSP’s

• Fixed-point DSP’s are cheaper and use less

power but care must be taken with scaling to

avoid over and underflow.

• Floating-point DSP’s are easier to program.

Numbers are automatically scaled. They are

more complicated and expensive.

Advantages of DSP’s over Analog Circuits

• Can implement complex linear or nonlinear

algorithms.

• Can modify easily by changing software.

• Reduced parts count makes fabrication easier.

• High reliability

2

'

&

$

%

DSP Applications

• Telecommunications: telephone line modems, FAX,

cellular telephones, speaker phones, answering

machines

• Voice/Speech: speech digitization and compression,

voice mail, speaker verification, and speech synthesis

• Automotive: engine control, antilock brakes, active

suspension, airbag control, and system diagnosis

• Control Systems: head positioning servo systems in

disk drives, laser printer control, robot control, engine

and motor control, and numerical control of automatic

machine tools

• Military: radar and sonar signal processing,

navigation systems, missile guidance, HF radio

frequency modems, secure spread spectrum radios, and

secure voice

• Medical: hearing aids, MRI imaging, ultrasound

imaging, and patient monitoring

• Instrumentation: spectrum analysis, transient

analysis, signal generators

• Image Processing: HDTV, image enhancement,

image compression and transmission, 3-D rotation,

and animation

3

'

&

$

%

TMS320C6701 Evaluation Module

(EVM)

 Running Title—Attribute Reference

1-7 Chapter Title—Attribute Reference

1.3 TMS320C6x EVM Hardware Functional Overview

Figure 1–3 shows the basic functional block diagram and interfaces of the ’C6x
EVM.

Figure 1–3. TMS320C6x EVM Block Diagram

PCI
bus

PCI target
JTAG emulation

PCI target
HPI

PCI master
EMIF interface

Dual clocks
(25/33.25 MHz)External JTAG

header

Voltage
regulators

Stereo 16-bit
audio codec

64K × 32
SBSRAM

1M × 32
SDRAM
(bank 0)

Expansion
memory interface

Expansion
peripheral interface

MIC and LINE IN/OUT
audio jacks

External power
connector

Voltage
supervisor

JTAG

HPI

VDD

RST McBSP0

EMIF

CLKIN

TMS320C6701

DSP

(100/133 MHz)

(12)
User-option

DIP switches

LED indicators
Programmable

logic

Miscellaneous control

1M × 32
SDRAM
(bank 1)

McBSP1/
timers

CE0

CE2

CE3

CE1

CE1

CE1

CE1

BAR1

BAR3/
BAR4

BAR2

FIFOs

CPLD
ISP header

5/12 V

The ’C6x EVM hardware can be divided into 12 functional areas. This section
provides an overview of each of these 12 areas. Detailed descriptions of the

TMS320C6201/6701 Evaluation Module User’s Guide (SPRU269D, p. 1-7)

4

'

&

$

%

TMS320C6701 EVM Features

• TMS320C6701 floating-point DSP

• Quad clock support (25 MHz, 100 MHz, 33.25

MHz, 133 MHz)

• PCI interface to PC

• 8M bytes of 100-MHz synchronous dynamic

RAM (SDRAM)

• 256K bytes of 133-MHz synchronous burst

static RAM (SBSRAM)

• Embedded JTAG emulation

• Stereo 16-bit audio codec (CS4231A) with

fourteen sampling rates from 5.5 kHz to 48

kHz

• Access to all DSP memory from PCI bus via

host port interface (HPI)

• Connectors for daughterboard support

5

'

&

$

%

EVM Stereo Codec Interface

Stereo Audio Interface

 1-70

1.9 Stereo Audio Interface

The ’C6x EVM includes a stereo audio interface that has the following charac-
teristics:

� 16-bit stereo audio codec with sample rates from 5.5 kHz–48 kHz
� Linear (8- and 16-bit) and companded (µ-law and A-law) data formats
� Support for stereo electret microphones with voltage bias
� Stereo line-level input
� Stereo line-level output
� Input gain and output attenuation control
� Three 3.5-mm (1/8-inch) stereo audio jacks

Figure 1–12 shows the configuration of the ’C6x EVM’s stereo audio interface.

The CS4231A multimedia codec provides a flexible, general-purpose audio
front-end for the EVM. The CS4231A is a 16-bit stereo device. It includes com-
plete on-chip filtering plus analog mixing and programmable gain and attenua-
tion. The device supports 16-bit linear, 8-bit linear, and 8-bit companded (µ-law
and A-law) data formats.

Figure 1–12. TMS320C6x EVM Stereo Audio Interface

’C6201/6701
DSP

’CBT3257
voltage

Xlat/MUX
CS4231A

stereo
audio
codec

(16-bit, 5.5–48 kHz)

TI TLC2272A
audio op amp

Expansion peripheral
interface connector 7

16.9344
MHz

Mic preamp,
biasing, & filtering

MIC IN

3.5-mm stereo
audio jacks

Sample rate
crystals

McBSP0

McBSP0
MUX control
(from CPLD)

McBSP0
serial
data/

clocks

PDWN

8

7

7

’LVTH162245

LINE IN

LINE OUT

24.576
MHz

Parallel control interface

Passive filter/
AC coupling

Passive filter/
AC coupling

TMS320C6201/6701 Evaluation Module Technical Reference (SPRU305, Figure

1-12, p. 1-70)

6

'

&

$

%

TMS320C6701 Architecture

TMS320C6201/6701 DSP

1-5TMS320C6x EVM Hardware

� Two general-purpose timers

� Multiply-by-4 phase locked loop (PLL) and multiply-by-1 PLL-bypass
options

� 1M-bit on-chip memory (2K × 256 bits of program memory/64K bytes
of data memory)

� Miscellaneous

� IEEE-1149.1 (JTAG) boundary-scan compatible for emulation and
test support

� 352-lead ball grid array (BGA) package

� 0.25-micron/5-level metal process with CMOS technology

� 3.3-V I/O and 2.5-V or 1.8-V internal core voltages

Figure 1–2 shows the ’C6201 core, peripherals, and external interfaces.

Figure 1–2. TMS320C6201 Core, Peripherals, and External Interfaces

A

16 Data

23

D

JTAG test/
emulation

control

Power management

Program RAM/cache
32-bit address
256-bit data

512K-bit RAM

Program/data buses

’C62xx CPU core

Data path 1

.D1.M1.S1.L1

A register file

Data path 2

.L2.S2.M2.D2

B register file

Instruction decode

Instruction dispatch
Program fetch

Interrupts

Control
registers

Emulation

Test

Control
logic

DMA

Ch 0

Multichannel
buffered

serial port

Multichannel
buffered

serial port

Timer

Timer

PLL clock
generator

Host
port

Data RAM
32-bit address

8-, 16-, 32-bit data
512K-bit RAM

Ch 1

Ch 2

Ch 3

Auxiliary
channel P

er
ip

h
er

al
 b

u
s

E
M

IF

32

.L, .S, and .M functional units execute floating-point instructions

TMS320C6201/6701 Evaluation Module Technical Reference (SPRU305, p. 1-5)

7

'

&

$

%

Main ’C6701 Features

• VelociTI Very Long Instruction Word

(VLIW) CPU Core

Fetches eight 32-bit instructions at once

– Eight functional units

∗ Four ALUs (fixed and floating-point)

∗ Two ALUs (fixed-point)

∗ Two multipliers (fixed and

floating-point)

32 × 32 bit integer multiply with 32 or

64-bit result

– Load-store architecture with 32 32-bit

general purpose registers

• Instruction Set Features

– Hardware support for IEEE single and

double precision floating-point operations

– 8, 16, and 32-bit addressable

– 8-bit overflow protection and saturation

– Bit-field extract, set, clear

8

'

&

$

%

’C6701 Features (cont.)

• 1 M-Bit On-Chip SRAM

– 512K-bit internal program/cache

(16K 32-bit instructions)

– 512K-bit dual access internal data

(64K bytes)

• 32-bit external memory interface (EMIF)

– Glueless interface to SDRAM, SBSRAM,

SRAM, and EPROM

– 52M-byte external memory space

• 4-Channel Direct Memory Access (DMA)

Controller

• 16-Bit Host-Port Interface (HPI)

• Two Multichannel Buffered Serial Ports

(McBSP)

• Two 32-Bit General Purpose Timers

• IEEE-1149.1 JTAG Boundary Scan

9

'

&

$

%

Instructions Common to C62x and C67x

.L unit .M Unit .S Unit .D Unit

ABS MPY ADD SET ADD STB (15-bit offset)2

ADD MPYU ADDK SHL ADDAB STH (15-bit offset)2

ADDU MPYUS ADD2 SHR ADDAH STW (15-bit offset)2

AND MPYSU AND SHRU ADDAW SUB
CMPEQ MPYH B disp SSHL LDB SUBAB
CMPGT MPYHU B IRP1 SUB LDBU SUBAH
CMPGTU MPYHUS B NRP1 SUBU LDH SUBAW
CMPLT MPYHSU B reg SUB2 LDHU ZERO
CMPLTU MPYHL CLR XOR LDW
LMBD MPHLU EXT ZERO LDB (15-bit offset)2

MV MPYHULS EXTU LDBU (15-bit offset)2

NEG MPYHSLU MV LDH (15-bit offset)2

NORM MPYLH MVC1 LDHU (15-bit offset)2

NOT MPYLHU MVK LDW (15-bit offset)2

OR MPYLUHS MVKH MV
SADD MPYLSHU MVKLH STB
SAT SMPY NEG STH
SSUB SMPYHL NOT STW
SUB SMPYLH OR
SUBU SMPYH
SUBC
XOR
ZERO

See TMS320C6000 CPU and Instruction Set, Reference Guide, SPRU189F for

complete descriptions of instructions.

10

'

&

$

%

Extra Instructions for the C67x

.L unit .M Unit .S Unit .D Unit

ADDDP MPYDP ABSDP ADDAD

ADDSP MPYI ABSSP LDDW

DPINT MPYID CMPEQDP

DPSP MPYSP CMPEQSP

DPTRUNC CMPGTDP

INTDP CMPGTSP

INTDPU CMPLTDP

INTSP CMPLTSP

INTSPU RCPDP

SPINT RCPSP

SPTRUNC RSQRDP

SUBDP RSQRSP

SUBSP SPDP

See TMS320C6000 CPU and Instruction Set, Reference Guide, SPRU189F for

complete descriptions of instructions.

11

'

&

$

%

Addressing Modes

• Linear Addressing – with all registers

• Circular Addressing – with registers A4–A7

and B4–B7

Forms for Indirect Addresses
Preincrement or Postincrement or

No Modification of Predecrement of Postdecrement of

Addressing Type Address Register Address Register Address Register

Register Indirect *R *++R *R++
*−−R *R−−

Register Relative *+R[ucst5] *++R[ucst5] *R++[ucst5]
*−R[ucst5] *−−R[ucst5] *R−−[ucst5]

Register Relative with *+B14/B15[ucst15] none none
15-bit Constant Offset

Base + Index *+R[offsetR] *++R[offsetR] *R++[offsetR]
*−R[offsetR] *−−R[offsetR] *R−−[offsetR]

Notes:
ucst5 = 5-bit unsigned integer constant
ucst15 = 15-bit unsigned integer constant
R = base register
offsetR = index register

Example: LDW .D1 *++A4[9], A1
Load a 32-bit word using functional unit D1 into register A1 from the memory byte address:
contents of (A4) + 4 × 9

12

'

&

$

%

TMS320C6701 Memory Map

Memory Maps

 3-2

3.1 Memory Maps

The memory maps of the ’C6000 platform of devices are shown in Figure 3–1
and Figure 3–2. The total memory address range of the ’C6000 devices is
4Gbytes (corresponding to 32-bit internal address representation). Each
memory map is divided into the internal program memory, internal data
memory, external memory spaces, and internal peripheral space.

Figure 3–1. TMS320C6201/C6202/C6701 Memory Maps
Starting address Memory map 0

(Direct execution)
Block size

(bytes)
Starting address Memory map 1

(Boot mode)
Block size

(bytes)

0000 0000h External memory space
CE0

16M 0000 0000h Internal program RAM 64K/(256K
on ’C6202)

0100 0000h External memory space
CE1

4M 0001 0000h
(0004 0000h
on ’C6202)

Reserved
4M–64K

(4M–256K
on ’C6202)

0140 0000h Internal program RAM 64K/(256K
on ’C6202)

0040 0000h External memory space
CE0

16M

0141 0000h
(0144 0000h
on ’C6202)

Reserved
4M–64K

(4M–256K
on ’C6202)

0140 0000h External memory space
CE1

4M

0180 0000h Internal peripherals 8M 0180 0000h Internal peripherals 8M

0200 0000h External memory space
CE2

16M 0200 0000h External memory space
CE2

16M

0300 0000h External memory space
CE3

16M 0300 0000h External memory space
CE3

16M

0400 0000h Reserved 1G–64M 0400 0000h Reserved 1G–64M

4000 0000h Expansion bus
(on ’C6202)

1G 4000 0000h Expansion bus
(on ’C6202)

1G

8000 0000h Internal Data RAM 64K/(128K
on ’C6202)

8000 0000h Internal data RAM 64K/(128K
on ’C6202)

8001 0000h
8002 0000h Reserved

2G–64K
(2G–128K
on ’C6202)

8001 0000h
8002 0000h Reserved

2G–64K
(2G–128K
on ’C6202)

• 4 G-byte memory space (32-bit address bus)

• Separate program and data memory

• Two different maps

– Direct Execution Mode (Map 0) External

program memory at address 0

– Boot Mode (Map 1) Internal program

memory at address 0

• ENEE428 EVM’s set to Map 1, 100 MHz clock

TMS320C6000 Technical Brief (SPRU197D, p. 3-2)

13

'

&

$

%

Parallel Operations

• The instruction word for each functional unit

is 32 bits long.

• Instructions are fetched 8 at a time consisting

of 8 × 32 = 256 bits. The group is called a

fetch packet. Fetch packets must start at an

address that is a multiple of 8 32-bit words.

• Up to 8 instructions can be executed in

parallel. Each must use a different functional

unit. Each group of parallel instructions is

called an execute packet.

• The p-bit (bit 0) determines if an instruction

executes in parallel with another. The

instructions are scanned from the lowest

address to the highest. If the p-bit of

instruction i is 1, then instruction i + 1 is

executed in parallel with instruction i. If it is

0, instruction i + 1 is executed one cycle after

instruction i.

14

'

&

$

%

TMS320C6x Pipeline Phases

Stage Phase Symbol

Program Program Address PG
Fetch Generation

Program Address PS
Sent

Program PW
Wait

Program PR
Data Receive

Program Dispatch DP
Decode

Decode DC

Execute Execute 1 E1
...

...

Execute 10 E10

See TMS320C6000 CPU and Instruction Set Reference Guide, SPRU189F, Table

7-1, pp. 7-7 to 7-9, for details of pipeline phases.

15

'

&

$

%

Pipeline Operation Asuming One Execute

Packet per Fetch Packet

Clock Fetch Packet

Cycle n n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7 n + 8 n + 9 n + 10

1 PG

2 PS PG

3 PW PS PG

4 PR PW PS PG

5 DP PR PW PS PG

6 DC DP PR PW PS PG

7 E1 DC DP PR PW PS PG

8 E2 E1 DC DP PR PW PS PG

9 E3 E2 E1 DC DP PR PW PS PG

10 E4 E3 E2 E1 DC DP PR PW PS PG

11 E5 E4 E3 E2 E1 DC DP PR PW PS PG

12 E6 E5 E4 E3 E2 E1 DC DP PR PW PS

13 E7 E6 E5 E4 E3 E2 E1 DC DP PR PW

14 E8 E7 E6 E5 E4 E3 E2 E1 DC DP PR

15 E9 E8 E7 E6 E5 E4 E3 E2 E1 DC DP

16 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1 DC

17 E10 E9 E8 E7 E6 E5 E4 E3 E2 E1

Need for NOP’s

• Different instruction types require from 1 to 10

execution phases. Therefore, NOP instructions

must be added to make sure results of one

instruction are needed by another.

• NOP’s can be added manually in hand coded

assembly (hard), in linear assembly by the

assembler (easier), or by the C compiler (easiest).

16

'

&

$

%

TI Software Tools

Code Composer Studio

• Create and edit source code

• Compile (cl6x.exe), assemble (asm6x.exe),

and link (lnk6x.exe) programs using project

“.pjt” files. (Actually, cl6x.exe is a shell

program that can compile, assemble and link.)

• Build libraries with ar6x.exe

• Include a real-time operating system,

DSP/BIOS, in the DSP code with real-time

data transfer (RTDX) between the PC and

DSP

• Load programs into DSP, run programs,

single step, break points, read memory and

registers, profile running programs, etc.

17

'

&

$

%

Building Programs

Software Development Tools Overview

 1-2

1.1 Software Development Tools Overview

Figure 1–1 illustrates the C6000 software development flow. The shaded por-
tion of the figure highlights the most common path of software development
for C language programs. The other portions are peripheral functions that
enhance the development process.

Figure 1–1. TMS320C6000 Software Development Flow

Assembler

Linker

Macro
library

Library of
object
files

EPROM
programmer

Assembler
source

COFF
object
files

Archiver

Macro
source

files

Archiver

C/C++ compiler

Library-build
utility

Run-Time-
support
library

TMS320C6000

C/C++
source

files

Executable
COFF

file

Assembly-
optimized

file

Assembly
optimizer

Linear
assembly

TMS320C6000 Optimizing Compiler User’s Guide (SPRU187I, April 2001,

Figure 1-1, p. 1-2)

18

'

&

$

%

Other Software

• Microsoft Visual C++

• MATLAB

• Freeware Digital Filter Design

Programs

– WINDOW.EXE

– REMEZ87.EXE

– IIR.EXE

– RASCOS.EXE

– SQRTRACO.EXE

• Plotting program GNUPLOT

• Standard MS Windows Programs like

MS Word and Excel

• FTP and Telnet programs

19

'

&

$

%

First Lab Session

The software utility you will use to generate and

edit source code, build executable DSP programs,

and load these programs into the ’C6701 EVM is

called Code Composer Studio.

For your first lab period:

1. Check out the hardware. Look at the back of

the computer and see where the stereo

connectors for the A/D and D/A converters

plug into the ’C6701 EVM board. Notice that

the connectors on the board are labeled MIC

IN, LINE IN, and LINE OUT. The MIC IN

input is for low voltage signals. For ENEE

428 you should use only the LINE IN and

LINE OUT connectors.

2. Work through as much of the Code Composer

tutorial as possible. You should use the full 3

hour lab period at a minimum.

No lab report is required for this experiment.

20

'

&

$

%

The Code Composer Studio Tutorial

Use the program files in the directory

C:\ti\tutorial\evm6201. (There is no evm6701

tutorial.) Replace 6201 by 6701 where a processor

type is required. Please do not work in this directory.

Use a directory in your workspace on the network

server.

1. Double click on the Code Composer icon named

CCS 2

(’C6000)
on the desktop.

2. Click on Help on the CC menu bar.

3. Then select Tutorial and click on the Contents tab

on the left.

4. Work through as much of the tutorial as you can

during lab. Be sure to learn how to

• create a project file

• build and run a program

• use break points and watch windows

• do file I/O and display graphs

21

'

&

$

%

Building Programs from DOS

If you do not like to use the Code Composer

project environment, you can use the TI code

development tools from a DOS window. The shell

program, CL6X.EXE, compiles, assembles, and

links programs. The general format for invoking

this shell is

cl6x [-compiler options] [filenames]

[-z [link options]]

See the TMS320C6000 Floating-Point DSP

Optimizing Compiler User’s Guide (SPRU1871)

for details. The entry [filenames] is a list of

source filenames. Filenames that have no

extension are automatically considered to have

the .c extension and to be C source code.

Filenames with the .asm extension are considered

to be assembly language source code and are

assembled. Everything to the right of the -z

option applies only to the linker.

22

