
Texas Instruments
ExpressDSP Algorithm Standard

Prof. Brian L. Evans
Dept. of Electrical and Computer Engineering
The University of Texas at Austin

August 7, 2001

24 - 2

Outline
� Introduction
� ExpressDSP requirements and rules
� Source code
� Algorithm performance characterization
� C6000-specific guidelines
� Direct memory access (DMA) resource rules
� Conclusion

Reference: http://www-s.ti.com/sc/techlit/spru352

24 - 3

Introduction: Algorithm Model

� Transformation of inputs into outputs
� Interoperate (play well) with other algorithms
� Decoupled from scheduling and resource

allocation (e.g. dynamic memory allocation)

object code
(function)…in

pu
ts

ou
tp

ut
s

algorithm performance

…

source code (function)

24 - 4

Introduction: Abstraction
� Maurice Wilkes: “There is no problem in

computer programming that cannot be solved by
an added level of indirection.”
� Achieve device independence by decoupling

algorithms and physical peripherals
� Achieve algorithm interchangeability by using

function pointers
Maurice Wilkes is a hardware designer and the father

of microcoding. He is from England and is 88
years old. He is one of the few foreign members of
the US National Academy of Engineering.

24 - 5

Introduction: Abstraction
� Jim Gray: “There is no performance problem that

cannot be solved by eliminating a level of
indirection.”

Jim Gray is software designer who is an expert in
transaction processing and databases. He is in his
early 50s and works at Microsoft Research in the
San Francisco Bay Area. Jim is a member of the
US National Academy of Engineering.

24 - 6

ExpressDSP Requirements
� Algorithms from multiple vendors can be

integrated into a single system
� Algorithms are framework agnostic
� Algorithms can be deployed in statically scheduled

and dynamically scheduled run-time environments
� Algorithms can be distributed in binary form (e.g.

Hyperception’s Hypersignal approach)
� Algorithm integration does not require compilation

but may require reconfiguration and relinking

24 - 7

ExpressDSP Rules
� Source code (levels 1 and 2)

� Programming guidelines: C callable, reentrant, etc.
� Component model: modules, naming conventions, etc.

� Algorithm performance characterization (level 2)
� Data and program memory
� Interrupt latency (delay upon invocation)
� Execution time (throughput)

� DMA resource rules (level 2)
� DSP-specific (level 3)

24 - 8

Programming Guidelines (level 1)
R1 Algorithms must follow run-time conventions

imposed by TI’s implementation of the C language
� Only externally visible functions must be C callable
� All functions must be careful in use of the stack

R2 Algorithms must be reentrant
� Only modify data on stack or in instance “object”
� Treat global and static variables as read-only data
� Do not employ self-modifying code
� Disable interrupts (disabling all thread scheduling)

around sections of code that violate these rules

24 - 9

Reentrant Example
/* previous input values */
int iz0 = 0, iz1 = 0;
void PRE_filter(int piInput[],

int iLength) {
int i;
for (i = 0; i < iLength; i++) {
int tmp = piInput[i] – iz0 +

(13*iz1 + 16) / 32;
iz1 = iz0;
iz0 = piInput[i];
piInput[i] = tmp;

}
}

void PRE_filter(int piInput[],
int iLength, int piPrevInput[]) {

int i;
for (i = 0; i < iLength; i++) {
int iTmp = piInput[i] –

piPrevInput[0] +
(13*piPrevInput[1] + 16) / 32;

piPrevInput[1] = piPrevInput[0];
piPrevInput[0] = piInput[i];
piInput[i] = iTmp;

}
}

Not reentrant Reentrant

state

24 - 10

Component Model (level 2)
R7 All header files must support multiple inclusions

within a single source file
R8 All external definitions must be API identifiers or

API and vendor prefixed (e.g. H263_UT)
R11 All modules must supply an initialization (e.g.

FIR_init) and finalization (e.g. FIR_exit) method
� Init function: initialize global data
� Exit function: run-time debugging assertions for sanity

checks (usually empty in production code)

24 - 11

Component Model (level 2)

LOG_getbuf()Same as constants or
functions as appropriate

Macros
bufferLowercaseStructure fields

LOG_Obj or intTitle case after prefixData types

G729_FRAMELENAll uppercaseConstants

LOG_printf()Begin with lower case
(after prefix)

Variables and
functions

ExampleDescriptionConvention

R10 Naming Conventions

24 - 12

FIR Module
typedef struct FIR_Params {

int iFrameLen;
int *piCoeff;

} FIR_Params;
const FIR_Params FIR_PARAMS

= { 64, NULL };
typedef struct FIR_Obj {

int iHist[16];
int iFrameLen;
int *piCoeff;

} FIR_Obj;
void FIR_init(void) { }
void FIR_exit(void) { }

typedef struct FIR_Obj* FIR_Handle;
FIR_Handle FIR_create(

FIR_Obj *pFir,
const FIR_Params *pParams) {

if (pFir) {
if (pParams == NULL) {
pParams = &FIR_PARAMS;

}
pFir->iFrameLen =
pParams->iFrameLen;

pFir->piCoeff = pParams->piCoeff;
memset(pFir->iHist, 0,

sizeof(pFir->iHist));
}
return(pFir);

}
void FIR_delete(FIR_Handle fir) { }

24 - 13

Algorithm Performance (level 2)
� Algorithms declare memory usage in bytes

R19 Worst-case heap data memory (inc. alignment)
R20 Worst-case stack space data memory
R21 Worst-case static data memory
R22 Program memory

� Algorithms declare
R23 Worst-case interrupt latency
R24 Typical period and worst case execution time

� Include this information in the comment header

24 - 14

Example: Worst-case Heap Usage

014400000Persistent

000192000Scratch

AlignSizeAlignSizeAlignSize

DARAM SARAM External

Example requires 960 16-bit words of single-access on-chip
memory, 720 16-bit words of external persistent memory.

Entries in table may be functions of algorithm parameters.

24 - 15

C6000-specific Rules
R25 All C6000 algorithms must be supplied in little

endian format.
� Guideline 13 All C6000 algorithms should be supplied

in both little and big endian formats

R26 All C6000 algorithms must access all static and
global data as far data.

R27 C6000 algorithms must never assume placement
in on-chip memory; they must properly operate
with program memory operated in cache mode.

24 - 16

C6000 Register Usage

ScratchGeneral
purpose

A16-A31
(C64x)

PreserveFrame
pointer

A15

PreserveGeneral
purpose

A10-A14

ScratchGeneral
purpose

A0-A9

TypeUsageRegister

PreserveData page
pointer

B14

ScratchGeneral
purpose

B16-B31
(C64x)

PreserveStack
pointer

B15

PreserveGeneral
purpose

B10-B13

ScratchGeneral
purpose

B0-B9

TypeUsageRegister

Preserve: function must
restore its value on exit

24 - 17

DMA Resource Rules
� DMA is used to move large blocks of memory on

and off chip
� Algorithms cannot access DMA registers directly
� Algorithms cannot assume a particular physical

DMA channel
� Algorithms must access the DMA resources

through a handle using the specific asynchronous
copy (ACPY) APIs.

� IDMA R1 All data transfer must be completed
before return to caller

24 - 18

DMA Resource Rules
IDMA R2 All algorithms using the DMA resource

must implement the IDMA interface
IDMA R3 Each of the IDMA methods implemented

must be independently relocateable.
IDMA R4 All algorithms must state the maximum

number of concurrent DMA transfers for each
logical channel

IDMA R5 All algorithms must characterize the
average and maximum size of the data transfers
per logical channel for each operation.

24 - 19

Top 10 XDAIS Rules
1. All global and static variables must be constants
2. Must use C calling conventions
3. All include (.h) files must have an #ifdef structure

to prevent it from being evaluated twice
4. All visible (external) variables, functions, and

constants must be prefixed by PACKAGE_ORG,
e.g. H263_UT.

5. Never use absolute (hardcoded) addresses (allows
data to be relocated and properly aligned)

24 - 20

Top 10 XDAIS Rules
6. Must use IDMA instead of regular DMA

(i.e. DAT_copy)
7. Never allocate or deallocate dynamic memory

(no use of malloc, calloc, or free)
8. Disable interrupts (disables all thread scheduling)

around sections of code that are not reentrant
9. Always check to see if a DSP/BIOS, chipset

library, or I/O function is allowed (most are not)
10. Compile in far mode, e.g. in Code Composer

24 - 21

Issues for Future Standards
� Version control

� Licensing, encryption, and IP protection

� Installation and verification (digital signatures)

� Documentation and online help

