Wireless OFDM Systems

Lecture by Prof. Robert W. Heath Jr.

rheath@ece.utexas.edu

Wireless Systems Innovations Laboratory Wireless Networking and Communications Group Department of Electrical and Computer Engineering The University of Texas at Austin

http://www.ece.utexas.edu/~rheath/research

OFDM Systems & Applications

Standard	Meaning	Carrier Freq.	Rate (Mbps)	Applications
DAB	Digital Audio Broadcasting	FM radio	0.008-0.384	Audio broadcasting
DVB-T	Digital Video Broadcasting	UHF	3.7-32	Digital TV broadcasting
DVB-H	Digital Video Broadcasting	UHF	13.7	Digital broadcasting to
				handheld
IEEE 802.11a	Wireless LAN / WiFi	5.2 GHz	6 - 54	Wireless Internet
IEEE 802.11g	Wireless LAN / WiFi	2.4 GHz	6 - 54	Wireless Internet
IEEE 802.11n	Wireless LAN (High Speed)	2.4 GHz - ??	6 – 100	Wireless Internet
IEEE 802.16	Broadband Wireless Access	2.1 GHz &	0.5 - 20	Fixed / Mobile Wireless
		others		Internet
IEEE 802.20	Mobile Broad. Wireless Access	3.5 GHz	~1	Mobile Internet / Voice?

Orthogonal Frequency Division Multiplexing (OFDM)

- Digital modulation scheme
- Wireless counterpart to discrete multitone transmission
- Used in a variety of applications
 - o **Broadcast**
 - o High-speed internet access

Wireless Digital Communication System Transmitter Message Source Encoder **Modulator** Pulseshape Raised Cosine Pulse a=0 $\exp(j 2\pi f_c t)$ **0.0** 0.6 Carrier frequency f_c examples 0.4 0.2 FM radio 88.5-107.7 MHz (0.2 MHz station spacing) -0.2 -0.4 L -4 -1 0 Time tin seconds 3 2 Analog cellular 900 MHz -2 1 Raised cosine Digital cellular 1.8 GHz pulse shaping filter

Wireless Digital Communication System

Multipath Propagation – Simple Model

 $\tau_0 = 0$ normalize relative delay of first path

 $\Delta_k = \tau_k - \tau_0$ difference in time-of-flight

Equivalent Propagation Channel

- Effective channel at receiver
 - Propagation channel
 - Transmit / receive filters
- $h_c(t)$ typically *random* & changes with time
 - → Must estimate and re-estimate channel

Impact of Multipath: Delay Spread & ISI

Max delay spread = effective number of symbol periods occupied by channel

Requires equalization to remove resulting ISI

Effective Delay Spread

- Delay spread depends on difference in path lengths
- Effective delay spread: function of the maximum difference

	Cell size	Max Delay	
		Spread	
Pico cell	0.1 km	300 ns	
Micro cell	5 km	15 us	
Macro cell	20 km	40 us	

• Sampling period T_s determines effect of delay spread

	Sampling Period	Channel taps	Application
802.11a	50 ns	6	WLAN
DVB-T	160 ns	90	Audio
DAB	600 ns	60	TV broadcast

Radio waves travel ~ 1 ns / ft

Multicarrier Modulation

- Divide broadband channel into narrowband subchannels
 - No ISI in *subchannels* if constant gain in every subchannel and if ideal sampling
- Orthogonal Frequency Division Multiplexing
 - Based on the fast Fourier transform
 - Standardized for DAB, DVB-T, IEEE 802.11a, 802.16a, HyperLAN II
 - Considered for fourth-generation mobile communication systems

An OFDM Modem

Frequency Domain Equalization

• For the *k*th carrier:

$$x_k = H_k \, s_k + v_k$$

where $H_k = \sum_n h_k(nT_s) \exp(j2\pi k n / N)$ where $n = 0, \dots, N-1$

• Frequency domain equalizer

• Noise enhancement factor

$$\hat{\sigma}_k^2 = \sigma_k^2 |H_k^{-1}|^2$$

DMT vs. OFDM

• DMT

- Channel changes very slowly ~ 1 s
- Subchannel gains known at transmitter
- Bitloading (sending more bits on good channels) increases throughput

• OFDM

- Channel may change quickly ~ 10 ms
- Not enough time to convey gains to transmitter
- Forward error correction mitigates problems on bad channels

Coded OFDM (COFDM)

• Error correction is *necessary* in OFDM systems

• Forward error correction (FEC)

- Adds redundancy to data stream
- Examples: convolutional codes, block codes
- Mitigates the effects of bad channels
- Reduces overall throughput according to the coding rate k/n

• Automatic repeat request (ARQ)

- Adds error detecting ability to data stream
- Examples: 16-bit cyclic redundancy code
- Used to detect errors in an OFDM symbol
- Bad packets are retransmitted (hopefully the channel changes)
- Usually used with FEC
- Minus: Ineffective in broadcast systems

Typical Coded OFDM Encoder

Example: IEEE 802.11a

Data rate (Mbits/s)	Modulation	Coding rate (R)	Coded bits per subcarrier (N _{BPSC})	Coded bits per OFDM symbol (N _{CBPS})	Data bits per OFDM symbol (N _{DBPS})
6	BPSK	1/2	1	48	24
9	BPSK	3/4	1	48	36
12	QPSK	1/2	2	96	48
18	QPSK	3/4	2	96	72
24	16-QAM	1/2	4	192	96
36	16-QAM	3/4	4	192	144
48	64-QAM	2/3	6	288	192
54	64-QAM	3/4	6	288	216

• IEEE 802.11 employs adaptive modulation

- Code rate & modulation depends on distance from base station
- Overall data rate varies from 6 Mbps to 54 Mbps

Typical Coded OFDM Decoder

•

Ideal Channel Estimation

- Wireless channels change frequently ~ 10 ms
- Require frequent channel estimation
- Many systems use pilot tones known symbols
 - Given s_k , for $k = k_1, k_2, k_3, \dots$ solve $x_k = \sum_{l=0}^{L} h_l e^{-j2\pi k l/N} s_k$ for h_l
 - Find $H_k = \sum_{l=0}^{L} h_l e^{-j2\pi k l/N}$ (significant computation)
- More pilot tones
 - Better noise resiliance
 - Lower throughput (pilots are *not* informative)

Channel Estimation Via Interpolation

- More efficient approach is interpolation
- Algorithm
 - For each pilot k_i find $H_{ki} = x_{ki} / s_{ki}$
 - Interpolate unknown values using interpolation filter
 - $H_{m} = \alpha_{m,1} H_{k1} + \alpha_{m,2} H_{k2} + \dots$
- Comments
 - Longer interpolation filter: more computation, timing sensitivity
 - Typical 1dB loss in performance in practical implementation

magnitude

OFDM and Antenna Diversity

- Wireless channels suffer from multipath fading
- Antenna diversity is a means of compensating for fading
- Example Transmit Delay Diversity

- Equivalent channel is $h(t) = h_1(t) + h_2(t D)$
- More channel taps = more diversity
 - Choose *D* large enough

OFDM and MIMO Systems

• Multiple-input multiple-output (MIMO) systems

- Use multiple transmit and multiple receive antennas
- Creates a *matrix* channel

• Equivalent system for *k*th tone

$$\mathbf{x}_{k} = \mathbf{H}_{k} \, \mathbf{s}_{k} + \mathbf{v}_{k}$$

- Vector inputs & outputs!
- See Wireless Sys. Innovations Lab Web page for more info₂₀₋₂₂

Why OFDM in Broadcast?

• Enables Single Frequency Network (SFN)

- Multiple transmit antennas geographically separated
- Enables same radio/TV channel frequency throughout a country
- Creates artificially large delay spread OFDM has no problems!

Why OFDM for High-Speed Internet Access?

• High-speed data transmission

- Large bandwidths -> high rate, many computations
- Small sampling periods -> delay spread becomes a serious impairment
- Requires *much lower* BER than voice systems

• OFDM pros

- Takes advantage of multipath through simple equalization

• OFDM cons

- Synchronization requirements are much more strict
 - Requires more complex algorithms for time / frequency synch
- Peak-to-average ratio
 - Approximately 10 log *N* (in dB)
 - Large signal peaks require higher power amplifiers
 - Amplifier cost grows nonlinearly with required power

Case Study: IEEE 802.11a Wireless LAN

• System parameters

- FFT size: 64
- Number of tones used 52 (12 zero tones)
- Number of pilots 4 (data tones = 52-4 = 48 tones)
- Bandwidth: 20MHz
- Subcarrier spacing : $\Delta_f = 20 \text{ MHz} / 64 = 312.5 \text{ kHz}$
- OFDM symbol duration: $T_{\rm FFT} = 1/\Delta_{\rm f} = 3.2$ us
- Cyclic prefix duration: $T_{GI} = 0.8$ us

- Signal duration:
$$T_{\text{signal}} = T_{\text{FFT}} + T_{\text{GI}}$$

Case Study: IEEE 802.11a WLAN

- Modulation: BPSK, QPSK, 16-QAM, 64-QAM
- Coding rate: 1 / 2, 2 / 3, 3 / 4
- FEC: *K*=7 (64 states) convolutional code

Frequency	Maximum Output	
Band (GHz)	Power	
	(6dBi antenna gain)	
	mW	
5.15 – 5.25	40	
5.25 - 5.35	200	
5.725-5.825	800	

