EE345S Real-Time Digital Signal Processing Lab Spring 2006

Fast Fourier Transform

Prof. Brian L. Evans
Dept. of Electrical and Computer Engineering The University of Texas at Austin

Lecture 17

Discrete-Time Fourier Transform

- Forward transform of discrete-time signal $x[n]$

$$
X(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}
$$

- Assumes that $x[n]$ is two-sided and infinite in duration
- Produces $X(\omega)$ that is periodic in ω (in units of rad/sample) with period 2π due to exponential term
- Inverse discrete-time Fourier transform

$$
x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\omega) e^{j \omega n} d \omega
$$

- Basic

$$
x[n]=\delta[n] \Leftrightarrow X(\omega)=1
$$

transform pairs

$$
x[n]=1 \Leftrightarrow X(\omega)=\sum_{k=-\infty}^{\infty} \delta(\omega-2 \pi k)
$$

Discrete Fourier Transform (DFT)

- Discrete Fourier transform (DFT) of a discretetime signal $x[n]$ with finite extent $n \in[0, N-1]$
$X[k]=\sum_{n=0}^{N-1} x[n] e^{-j \frac{2 \pi}{N} n k}=\left.X(\omega)\right|_{\omega=\frac{2 \pi}{N} k} \quad$ for $k=0,1, \ldots, N-1$
Two-Point DFT
$X[k]$ periodic with period N due to exponential $X[0]=x[0]+x[1]$
Also assumes $x[n]$ periodic with period N
$X[1]=x[0]-x[1]$
- Inverse discrete Fourier transform

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j \frac{2 \pi}{N} n k}
$$

- Twiddle factor $W_{N}=e^{j \frac{2 \pi}{N}} \Rightarrow x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{n k}$

Discrete Fourier Transform (con't)

- Forward transform
$X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{-n k}$
for $k=0,1, \ldots, N-1$
Exponent of W_{N} has period N
- Memory usage
$x[n]: N$ complex words of RAM
$X[k]: N$ complex words of RAM $W_{N}: N$ complex words of ROM
- Halve memory usage

Allow output array $X[k]$ to write over input array $x[n]$
Exploit twiddle factors symmetry

- Computation
N^{2} complex multiplications
$N(N-1)$ complex additions
N^{2} integer multiplications
N^{2} modulo indexes into lookup table of twiddle factors
- Inverse transform

$$
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] W_{N}^{n k}
$$

for $n=0,1, \ldots, N-1$
Memory usage?
Computational complexity?

Fast Fourier Transform Algorithms

- Communication system application: multicarrier modulation using harmonically related carriers
Discrete multitone modulation in ADSL \& VDSL modems OFDM transceivers such as in IEEE 802.11a wireless LANs
- Efficient divide-and-conquer algorithm

Compute discrete Fourier transform of length $N=2^{v}$
$1 / 2 N \log _{2} N$ complex multiplications and additions
How many real complex multiplications and additions?

- Derivation: Assume N is even and power of two

$$
X[k]=\sum_{n=0}^{N-1} x[n] W_{N}^{n k}=\sum_{n=\text { even }}^{N-1} x[n] W_{N}^{n k}+\sum_{n=\text { odd }}^{N-1} x[n] W_{N}^{n k}
$$

Fast Fourier Transform (cont'd)

- Substitute $\boldsymbol{n}=2 \boldsymbol{r}$ for \boldsymbol{n} even and $\boldsymbol{n}=\mathbf{2 r} \boldsymbol{r} \mathbf{1}$ for odd

$$
\begin{aligned}
X[k] & =\sum_{r=0}^{N / 2-1} x[2 r] W_{N}^{2 r k}+\sum_{r=0}^{N / 2-1} x[2 r+1] W_{N}^{(2 r+1) k} \\
& =\sum_{r=0}^{N / 2-1} x[2 r]\left(W_{N}^{2}\right)^{k k}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x[2 r+1]\left(W_{N}^{2}\right)^{k k}
\end{aligned}
$$

- Using the property $W_{N}^{2 l}=e^{-j 2 \pi \pi_{N}^{L}}=e^{-j_{N / 2}^{2 d}}=W_{N / 2}^{l}$

$$
X[k]=\sum_{r=0}^{N / 2-1} x[2 r] W_{N / 2}^{r k}+W_{N}^{k} \sum_{r=0}^{N / 2-1} x[2 r+1] W_{N / 2}^{r k}=G[k]+W_{N}^{k} H[k]
$$

One FFT length $N=>$ two FFTs length $N / 2$ Repeat process until two-point FFTs remain Computational complexity of two-point FFT?

$$
\begin{gathered}
\underline{\text { Two-Point FFT }} \\
X[0]=x[0]+x[1] \\
X[1]=x[0]-x[1]
\end{gathered}
$$

Linear Convolution by FFT

- Linear convolution
$x[n]$ has length N_{x} and $h[n]$ has length N_{h}

$$
y[n]=\sum_{m} h[m] x[n-m]
$$ $y[n]$ has length $N_{x}+N_{h}-1$

- Linear convolution requires $N_{x} N_{h}$ real-valued multiplications and $2 N_{x}+2 N_{h}$ - 1 words of memory
- Linear convolution by FFT of length $N=N_{x}+N_{h}$ - 1

Zero pad $x[n]$ and $h[n]$ to make each N samples long
Compute forward DFTs of length N to obtain $X[k]$ and $H[k]$ $Y[k]=H[k] X[k]$ for $k=0 \ldots N-1$: may overwrite $X[k]$ with $Y[k]$
Take inverse DFT of length N of $Y[k]$ to obtain $y[n]$

- If $\boldsymbol{h}[\boldsymbol{n}]$ is fixed, then precompute and store $H[k]$

Linear Convolution by FFT

- Implementation complexity using N-length FFTs
$3 N \log _{2} N$ complex multiplications and additions
$2 N$ complex words of memory if $Y[k]$ overwrites $X[k]$
- FFT approach requires fewer computations if
$12\left(N_{x}+N_{h}-1\right) \log _{2}\left(N_{x}+N_{h}-1\right)<N_{x} N_{h}$
- Disadvantages of FFT approach
- Uses twice the memory: $2\left(N_{x}+N_{h}-1\right)$ complex words vs. $2 N_{x}+2 N_{h}-1$ words
- Often requires floating-point arithmetic
- Adds delay of N_{x} samples to buffer $x[n]$

FFT under fixedpoint arithmetic? whereas linear convolution is pointwise

- Creates discontinuities at boundaries of blocks of input data, which can be overcome by overlapping blocks

