Fast Fourier Transform

Prof. Brian L. Evans
Dept. of Electrical and Computer Engineering
The University of Texas at Austin

Lecture 17
Discrete-Time Fourier Transform

• **Forward transform of discrete-time signal** $x[n]

\[X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \]

 – Assumes that $x[n]$ is two-sided and infinite in duration
 – Produces $X(\omega)$ that is periodic in ω (in units of rad/sample)
 with period 2π due to exponential term

• **Inverse discrete-time Fourier transform**

\[x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\omega) e^{j\omega n} d\omega \]

• **Basic transform pairs**

\[x[n] = \delta[n] \iff X(\omega) = 1 \]

\[x[n] = 1 \iff X(\omega) = \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k) \]
Discrete Fourier Transform (DFT)

- Discrete Fourier transform (DFT) of a discrete-time signal $x[n]$ with finite extent $n \in [0, N-1]$

$$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N} nk} = X(\omega)\bigg|_{\omega=\frac{2\pi}{N} k} \quad \text{for } k = 0, 1, \ldots, N-1$$

$X[k]$ periodic with period N due to exponential
Also assumes $x[n]$ periodic with period N

- Inverse discrete Fourier transform

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N} nk}$$

- Twiddle factor

$$W_N = e^{j\frac{2\pi}{N}} \Rightarrow x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{nk}$$

Two-Point DFT

- $X[0] = x[0] + x[1]$
- $X[1] = x[0] - x[1]$
Discrete Fourier Transform (con’t)

• **Forward transform**
 \[X[k] = \sum_{n=0}^{N-1} x[n] W_N^{-nk} \]
 for \(k = 0, 1, \ldots, N-1 \)
 Exponent of \(W_N \) has period \(N \)

• **Memory usage**
 \(x[n] \): \(N \) complex words of RAM
 \(X[k] \): \(N \) complex words of RAM
 \(W_N \): \(N \) complex words of ROM

• **Halve memory usage**
 Allow output array \(X[k] \) to write over input array \(x[n] \)
 Exploit twiddle factors symmetry

• **Computation**
 \(N^2 \) complex multiplications
 \(N (N–1) \) complex additions
 \(N^2 \) integer multiplications
 \(N^2 \) modulo indexes into lookup table of twiddle factors

• **Inverse transform**
 \[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{nk} \]
 for \(n = 0, 1, \ldots, N-1 \)
 Memory usage?
 Computational complexity?
Fast Fourier Transform Algorithms

- **Communication system application: multicarrier modulation using harmonically related carriers**
 Discrete multitone modulation in ADSL & VDSL modems
 OFDM transceivers such as in IEEE 802.11a wireless LANs

- **Efficient divide-and-conquer algorithm**
 Compute discrete Fourier transform of length $N = 2^v$
 $\frac{1}{2} N \log_2 N$ complex multiplications and additions
 How many real complex multiplications and additions?

- **Derivation: Assume N is even and power of two**

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{nk} = \sum_{n=\text{even}}^{N-1} x[n] W_N^{nk} + \sum_{n=\text{odd}}^{N-1} x[n] W_N^{nk}$$
Fast Fourier Transform (cont’d)

• Substitute \(n = 2r \) for \(n \) even and \(n = 2r+1 \) for odd

\[
X[k] = \sum_{r=0}^{N/2-1} x[2r]W_{N}^{2rk} + \sum_{r=0}^{N/2-1} x[2r+1]W_{N}^{(2r+1)k}
\]

\[
= \sum_{r=0}^{N/2-1} x[2r](W_{N}^{2})^{rk} + W_{N}^{k} \sum_{r=0}^{N/2-1} x[2r+1](W_{N}^{2})^{rk}
\]

• Using the property \(W_{N}^{2} = e^{-j2\pi N} = e^{-j2\pi N/2} = W_{N/2}^{l} \)

\[
X[k] = \sum_{r=0}^{N/2-1} x[2r]W_{N/2}^{rk} + W_{N}^{k} \sum_{r=0}^{N/2-1} x[2r+1]W_{N/2}^{rk} = G[k] + W_{N}^{k} H[k]
\]

One FFT length \(N \Rightarrow \) two FFTs length \(N/2 \)
Repeat process until two-point FFTs remain
Computational complexity of two-point FFT?

Two-Point FFT
\[
X[0] = x[0] + x[1]
\]
\[
X[1] = x[0] - x[1]
\]
Linear Convolution by FFT

- **Linear convolution**

 \[y[n] = \sum_{m} h[m] x[n-m] \]

 \(x[n] \) has length \(N_x \) and \(h[n] \) has length \(N_h \)

 \(y[n] \) has length \(N_x + N_h - 1 \)

- **Linear convolution requires** \(N_x N_h \) **real-valued** multiplications and \(2N_x + 2N_h - 1 \) **words of memory**

- **Linear convolution by FFT of length** \(N = N_x + N_h - 1 \)

 Zero pad \(x[n] \) and \(h[n] \) to make each \(N \) samples long

 Compute forward DFTs of length \(N \) to obtain \(X[k] \) and \(H[k] \)

 \(Y[k] = H[k] X[k] \) for \(k = 0 \ldots N-1 \): may overwrite \(X[k] \) with \(Y[k] \)

 Take inverse DFT of length \(N \) of \(Y[k] \) to obtain \(y[n] \)

- **If** \(h[n] \) **is fixed**, then precompute and store \(H[k] \)
Linear Convolution by FFT

• Implementation complexity using N-length FFTs

 $3\ N\ \log_2\ N$ complex multiplications and additions
 $2\ N$ complex words of memory if $Y[k]$ overwrites $X[k]$

• FFT approach requires fewer computations if

 $12(N_x + N_h - 1)\ \log_2\ (N_x + N_h - 1) < N_x N_h$

• Disadvantages of FFT approach

 – Uses twice the memory: $2(N_x + N_h - 1)$ complex words vs. $2N_x + 2N_h - 1$ words
 – Often requires floating-point arithmetic
 – Adds delay of N_x samples to buffer $x[n]$ whereas linear convolution is pointwise
 – Creates discontinuities at boundaries of blocks of input data, which can be overcome by overlapping blocks

FFT under fixed-point arithmetic?