EE345S Real-Time Digital Signal Processing Lab Spring 2006

Quadrature Amplitude Modulation (QAM) Transmitter

Prof. Brian L. Evans Dept. of Electrical and Computer Engineering The University of Texas at Austin

Lecture 15

Introduction

- Digital Pulse Amplitude Modulation (PAM) modulates digital information onto amplitude of pulse and may be later modulated by sinusoid
- Digital Quadrature Amplitude Modulation (QAM) is two-dimensional extension of digital PAM that requires sinusoidal modulation
- Digital QAM modulates digital information onto pulses that are modulated onto

Amplitudes of a sine and a cosine, or equivalently Amplitude and phase of single sinusoid Review

Amplitude Modulation by Cosine

• **Example:** $y(t) = f(t) \cos(\omega_c t)$

Assume f(t) is an ideal lowpass signal with bandwidth ω_1 Assume $\omega_1 < \omega_c$

 $Y(\omega)$ is real-valued if $F(\omega)$ is real-valued

- Demodulation: modulation then lowpass filtering
- Similar derivation for modulation with $sin(\omega_0 t)$

Review

Amplitude Modulation by Sine

• **Example:** $y(t) = f(t) \sin(\omega_c t)$

Assume f(t) is an ideal lowpass signal with bandwidth ω_1 Assume $\omega_1 < \omega_c$

 $Y(\omega)$ is imaginary-valued if $F(\omega)$ is real-valued

Demodulation: modulation then lowpass filtering

Digital QAM Modulator

Matched delay matches delay through 90° phase shifter

Phase Shift by 90 Degrees

90° phase shift performed by Hilbert transformer

cosine => sine
$$\cos(2\pi f_0 t) \Rightarrow \frac{1}{2}\delta(f + f_0) + \frac{1}{2}\delta(f - f_0)$$

sine => - cosine
$$\sin(2\pi f_0 t) \Rightarrow \frac{j}{2}\delta(f + f_0) - \frac{j}{2}\delta(f - f_0)$$

• Frequency response of ideal sgn(x) = $\begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$ **Hilbert transformer:** $H(f) = -j \operatorname{sgn}(f)$

Hilbert Transformer

Hilbert Transformer

• Continuous-time ideal Hilbert transformer

$$H(f) = -j \operatorname{sgn}(f)$$

$$h(t) = \begin{cases} 1/(\pi t) & \text{if } t \neq 0 \\ 0 & \text{if } t = 0 \end{cases}$$

• Discrete-time ideal Hilbert transformer

$$H(\omega) = -J \operatorname{sgn}(\omega)$$
$$h[n] = \begin{cases} \frac{2}{\pi} \frac{\sin^2(\pi n/2)}{n} & \text{if } n \neq 0\\ 0 & \text{if } n = 0 \end{cases}$$

Discrete-Time Hilbert Transformer

• Approximate by odd-length linear phase FIR filter

Truncate response to 2L + 1 samples: L samples left of origin, L samples right of origin, and origin Shift truncated impulse response by L samples to right to

Shift truncated impulse response by *L* samples to right to make it causal

L is odd because every other sample of impulse response is 0

- Linear phase FIR filter of length N has same phase response as a delay of length (N-1)/2
 (N-1)/2 is an integer when N is odd (here N = 2 L + 1)
- How would you make sure that delay from local oscillator to sine modulator is equal to delay from local oscillator to cosine modulator?

• If we sample matched filter output at correct time instances, nT_{sym} , without any ISI, received signal

$$\begin{aligned} x(nT_{sym}) &= s(nT_{sym}) + v(nT_{sym}) \\ \text{where the signal component is} \\ s(nT_{sym}) &= a_n = (2i-1)d \quad \text{for } i = -M/2+1, \dots, M/2 \\ v(t) \text{ output of matched filter } G_r(\omega) \text{ for input of } \\ \text{channel additive white Gaussian noise } N(0; \sigma^2) \\ G_r(\omega) \text{ passes frequencies from } -\omega_{sym}/2 \text{ to } \omega_{sym}/2 \text{ ,} \\ \text{where } \omega_{sym} &= 2 \pi f_{sym} = 2\pi / T_{sym} \end{aligned}$$

- Matched filter has impulse response $g_r(t)$
- 15 10

4-PAM

$$v(nT) = \int_{-\infty}^{\infty} g_r(\tau)w(nT-\tau)d\tau \quad \text{Filtered noise} \quad T = T_{sym}$$

$$E\{v^2(nT)\} = E\{\left[\int_{-\infty}^{\infty} g_r(\tau)w(nT-\tau)d\tau\right]^2\} \quad \text{Noise power}$$

$$= E\{\int_{-\infty}^{\infty} \int_{0}^{\infty} g_T(\tau_1)w(nT-\tau_1)g_T(\tau_2)w(nT-\tau_2)d\tau_1d\tau_2\}$$

$$= \int_{-\infty-\infty}^{\infty} \int_{0}^{\infty} g_T(\tau_1)g_T(\tau_2)E\{w(nT-\tau_1)w(nT-\tau_2)\}d\tau_1d\tau_2$$

$$= \sigma^2 \int_{-\infty}^{\infty} g_r^2(\tau)d\tau = \sigma^2 \frac{1}{2\pi} \int_{-\omega_{sym}/2}^{\omega_{sym}/2} G_r^2(\omega)d\omega = \frac{\sigma^2}{T}$$

$$= \sigma^2 \int_{-\infty}^{\infty} g_r^2(\tau)d\tau = \sigma^2 \frac{1}{2\pi} \int_{-\omega_{sym}/2}^{\omega_{sym}/2} G_r^2(\omega)d\omega = \frac{\sigma^2}{T}$$

Decision error for inner points

$$P_{I}(e) = P(|v(nT)| > d) = 2Q\left(\frac{d}{\sigma}\sqrt{T}\right)$$

 $P_{O_{-}}(e) = P(v(nT) > d) = Q\left(\frac{d}{\sigma}\sqrt{T}\right)$ $= P(v(nT) > d)Q\left(\frac{d}{\sigma}\sqrt{T}\right)$ Decision error for outer points

$$P_{O_{+}}(e) = P(v(nT) < -d) = P(v(nT) > d)Q \left(\frac{d}{\sigma}\sqrt{d}\right)$$

Symbol error probability

• Received QAM signal

x(nT) = s(nT) + v(nT)

• Information signal *s*(*nT*)

$$s(nT) = a_n + j b_n = (2i-1)d + j (2k-1)d$$

where $i, k \in \{-1, 0, 1, 2\}$ for 16-QAM

• Noise, $v_{I}(nT)$ and $v_{Q}(nT)$ are independent Gaussian random variables ~ $N(0; \sigma^2/T)$

$$v(nT) = v_I(nT) + j v_Q(nT)$$

• Type 1 correct detection

$$P_{1}(c) = P(|v_{I}(nT)| < d \& |v_{Q}(nT)| < d)$$

$$= P(|v_{I}(nT)| < d)P(|v_{Q}(nT)| < d)$$

$$= (1 - \frac{P(|v_{I}(nT)| > d)}{2Q(\frac{d}{\sigma}\sqrt{T})} (1 - \frac{P(|v_{Q}(nT)| > d)}{2Q(\frac{d}{\sigma}\sqrt{T})} = (1 - 2Q(\frac{d}{\sigma}\sqrt{T}))^{2}$$

15 - 14

• **Type 2 correct detection** $P_{2}(c) = P(v_{I}(nT) < d \& |v_{Q}(nT)| < d)$ $= P(v_{I}(nT) < d)P(|v_{Q}(nT)| < d)$ $= (1 - 2Q(\frac{d}{\sigma}\sqrt{T}))(1 - Q(\frac{d}{\sigma}\sqrt{T}))$

15 - 15

• Probability of correct detection

$$P(c) = \frac{4}{16} (1 - 2Q(\frac{d}{\sigma}\sqrt{T}))^2 + \frac{4}{16} (1 - Q(\frac{d}{\sigma}\sqrt{T}))^2 + \frac{8}{16} (1 - 2Q(\frac{d}{\sigma}\sqrt{T}))(1 - Q(\frac{d}{\sigma}\sqrt{T}))$$
$$= 1 - 3Q(\frac{d}{\sigma}\sqrt{T}) + \frac{9}{4}Q^2(\frac{d}{\sigma}\sqrt{T})$$

• Symbol error probability

$$P(e) = 1 - P(c) = 3Q(\frac{d}{\sigma}\sqrt{T}) - \frac{9}{4}Q^2(\frac{d}{\sigma}\sqrt{T})$$

Average Power Analysis

- PAM and QAM signals are deterministic
- For a deterministic signal p(t), instantaneous power is $|p(t)|^2$
- 4-PAM constellation points: { -3 d, -d, d, 3 d }

- Total power 9 $d^2 + d^2 + d^2 + 9 d^2 = 20 d^2$

- Average power per symbol 5 d^2
- 4-QAM constellation points: { *d* + *j d*, -*d* + *j d*, *d* − *j d*, -*d* − *j d* }
 - Total power 2 d^2 + 2 d^2 + 2 d^2 + 2 d^2 = 8 d^2
 - Average power per symbol 2 d^2