EE345S Real-Time Digital Signal Processing Lab Spring 2006

Interpolation and Pulse Shaping

- Prof. Brian L. Evans
- Dept. of Electrical and Computer Engineering
- The University of Texas at Austin

Lecture 7

Discrete-to-Continuous Conversion

• Interpolate a smooth continuous-time function through a sequence of samples ("connect the dots")

Otherwise, aliasing has occurred, and the converter would reconstruct a cosine wave whose frequency is equal to the aliased positive frequency that is less than $\frac{1}{2} f_s$

Discrete-to-Continuous Conversion

• General form of interpolation is sum of weighted pulses $\widetilde{v}(t) = \sum_{n=1}^{\infty} v[n] p(t - T - n)$

$$\widetilde{y}(t) = \sum_{n=-\infty}^{\infty} y[n] p(t - T_s n)$$

- Sequence y[n] converted into continuous-time signal that is an approximation of y(t)
- Pulse function p(t) could be rectangular, triangular, parabolic, sinc, truncated sinc, raised cosine, etc.
- Pulses overlap in time domain when pulse duration is greater than or equal to sampling period T_s
- Pulses generally have unit amplitude and/or unit area
- Above formula is discrete-time convolution for each value of t

Interpolation From Tables

- Using mathematical tables of numeric values of functions to compute a value of the function
- Compute f(1.5) from table
 Zero-order hold: take value to be f(1) to make f(1.5) = 1.0 ("stairsteps")
 Linear interpolation: average values of nearest two neighbors to get f(1.5) = 2.5
 Curve fitting: fit the three points in table to function x² to compute f(1.5) = 2.25

Rectangular Pulse

• Zero-order hold

Easy to implement in hardware or software

The Fourier transform is

$$P(f) = T_s \operatorname{sinc}(\pi f T_s) = T_s \frac{\sin(\pi f T_s)}{\pi f T_s} \text{ where } \operatorname{sinc}(x) = \frac{\sin(x)}{x}$$

In time domain, no overlap between p(t) and adjacent pulses $p(t - T_s)$ and $p(t + T_s)$

In frequency domain, sinc has infinite two-sided extent; hence, the spectrum is not bandlimited

Sinc Function

 $\operatorname{sinc}(x) = \frac{\sin(x)}{x}$ How to compute sinc(0)? As $x \to 0$, numerator and denominator are both going to 0. How to handle it?

Even function (symmetric at origin) Zero crossings at $x = \pm \pi, \pm 2\pi, \pm 3\pi, ...$ Amplitude decreases proportionally to 1/x

Triangular Pulse

Linear interpolation

It is relatively easy to implement in hardware or software, although not as easy as zero-order hold p(t) $\begin{pmatrix} t \end{pmatrix} \begin{pmatrix} 1 - \frac{|t|}{|t|} & \text{if } T < t \leq T \end{pmatrix}$

$$p(t) = \Delta \left(\frac{t}{T_s}\right) = \begin{cases} 1 - \frac{t}{T_s} & \text{if } T_s < t \le T_s \\ 0 & \text{otherwise} \end{cases}$$

Overlap between p(t) and its adjacent pulses $p(t - T_s)$ and $p(t + T_s)$ but with no others

• Fourier transform is $P(f) = T_s \operatorname{sinc}^2(f T_s)$

How to compute this? *Hint:* The triangular pulse is equal to 1 / T_s times the convolution of rectangular pulse with itself In frequency domain, sinc² has infinite two-sided extent; hence, the spectrum is not bandlimited

Sinc Pulse

Ideal bandlimited interpolation

$$p(t) = \operatorname{sinc}\left(\frac{\pi}{T_s}t\right) = \frac{\operatorname{sin}\left(\frac{\pi}{T_s}t\right)}{\frac{\pi}{T_s}t} \quad \Longleftrightarrow \quad P(f) = \frac{1}{T_s}\operatorname{rect}\left(\frac{f}{T_s}\right) \qquad W = \frac{1}{2T_s}$$

In time domain, infinite overlap between other pulses Fourier transform has extent $f \in [-W, W]$, where P(f) is ideal lowpass frequency response with bandwidth W In frequency domain, sinc pulse is bandlimited

• Interpolate with infinite extent pulse in time?

Truncate sinc pulse by multiplying it by rectangular pulse
 Causes smearing in frequency domain (multiplication in time domain is convolution in frequency domain)

Raised Cosine Pulse: Time Domain

Pulse shaping used in communication systems

$$p(t) = \operatorname{sinc}\left(\frac{t}{T_s}\right) \frac{\cos(2\pi \,\alpha \,W \,t)}{1 - 16 \,\alpha^2 \,W^2 \,t^2}$$

impulse response large t to reduce tail

ideal lowpass filter Attenuation by $1/t^2$ for

W is bandwidth of an ideal lowpass response $\alpha \in [0, 1]$ rolloff factor Zero crossings at $t = \pm T_s, \pm 2 T_s, \ldots$

See handout G in reader on raised cosine pulse

Raised Cosine Pulse Spectra

- Pulse shaping used in communication systems
 - Bandwidth: $(1 + \alpha) W = 2 W - f_1$ f_1 transition begins from ideal lowpass response to zero

Full Cosine Rolloff

• When $\alpha = 1$ $p(t) = \frac{\operatorname{sinc}(4Wt)}{1 - 16W^2t^2} \quad \rightleftharpoons \quad P(f) = \begin{cases} \frac{1}{4W} \left(1 + \cos\left(\frac{\pi f}{2W_1}\right) \right) & \text{if } 0_1 \le |f| < 2W \\ 0 & \text{otherwise} \end{cases}$

At $t = \pm \frac{1}{2} T_s = \pm 1 / (4 W)$, $p(t) = \frac{1}{2}$, so that the pulse width measure at half of the maximum amplitude is equal to T_s Additional zero crossings at $t = \pm \frac{3}{2} T_s$, $\pm \frac{5}{2} T_s$, ...

- *Advantages in communication systems?* Easier for receiver to extract timing signal for synchronization
- Drawbacks in communication systems?

Transmitted bandwidth doubles over sinc pulse Bandwidth generally scarce in communications systems

DSP First Demonstration

- Web site: http://users.ece.gatech.edu/~dspfirst
- Sampling and aliasing demonstration (Chapter 4)

Sample sinusoid y(t) to form y[n]

Reconstruct sinusoid using rectangular, triangular, or truncated sinc pulse p(t) by

$$\widetilde{y}(t) = \sum_{n = -\infty}^{\infty} y[n] p(t - T_s n)$$

- Which pulse gives the best reconstruction?
- Sinc pulse is truncated to be four sampling perioids long. Why is the sinc pulse truncated?
- What happens as the sampling rate is increased?