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Digital 1IR Filters

e Infinite Impulse Response (IIR) filter has impulse
response of infinite duration, e.g.
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e How to implement the IIR filter by computer?
Let x[k] be the input signal and y[k] the output signal,
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Recursively compute output, given y[-1] and x[k] 6-2




Different Filter Representations

e Difference equation
K= 1k =11+ 5[k =21+ +{A]

Recursive computation
needs y[-1] and y[-2]

For the filter to be LTI,
y[-1]=0and y[-2] =0

e Transfer function

Assumes LTI system
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Second-order filter section
(a.k.a. biquad) with 2
poles and 0 zeros

—

Poles at —0.183 and +0.683 | ¢-3




Digital 1IR Biquad

Two poles and zero, one, or two zeros
v[k]

) v[k-1] ]

] v[k-2]

x[k] ylkl

Take z-transform of biquad structure
H Y() V(2) Y(z) b, +blz_1 +bzz_2
(2) = = - 1 )
X(z) X(@)V(z) l-az -a,z
Real coefficients a,, a,, b, b, and b, means poles
and zeros in conjugate symmetric pairs oo £j 3 ¢




Digital IIR Filter Design

e Poles near unit circle indicate filter’s passband(s)
o Zeros on/near unit circle indicate stopband(s)

* Biquad with zeros z, and z,, and poles p, and p,

Transtfer function H(z)=C (22 Mz~2)
(z=poNz—p)

C (e_jw — Zo)(ejiw - Zl)
(™= po)le’” = p))

ol

— H(e™)\=ICl

la — bl is distance ‘61 - po‘ ‘ej - pl‘

between complex I

numbers a and b

Magnitude response ‘H (ef“’)‘ =

17 17
= z||e’” - 2

Distance from point on unit
circle ¢ and pole location p, 6-5




Digital 1IR Biquad Design Examples

e Transfer function Hz)=C

(2= p)z—p,)

(Z ~ Z0)(1_ Zl) _C (1_ ZOZ_1 )(1—Z1Z_1)

(S

e Poles (X) & zeros (O) in conjugate symmetric pairs

— For coefficients in unfactored transfer function to be real

e Filters below have what magnitude responses?
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highpass
bandpass
bandstop

allpass

notch?




A Direct Form IIR Realization

e IIR filters having rational transfer functions

Y(2) _B(z) _by+hz + o +byz"
X(z) A l-az'—..—a,z" "Y(Z)(l Za z" X(z)Zb "

e Direct form realization
— Dot product of vector of N +1  YIk]
coefficients and vector of current

input and previous N inputs (FIR section)

— Dot product of vector of M coefficients and vector of
previous M outputs (FIR filtering of previous output values)

— Computation: M + N + 1 MACs

— Memory: M + N words for previous inputs/outputs and
M + N + 1 words for coefficients

H(z)=

6-7



Filter Structure As a Block Diagram

ylk]

y[k-2]

e Feed- o

. forward Feedback ¢ Note that
: M and N
: may be
: different
|
|




Another Direct Form IIR Realization

 When N=M,

Y(2)=b,X(2)+ Y (b,X(2)+a,Y(2) 2" =bX(2)+ Y W, (2) 2"

m=1 m=1

— Here, W () =b,, X(z) + a,, Y(2)
— In time domain, w [k]=b x[k]+a, y[k]

Ykl =byxlk1+ > w, [k —m]

 Implementation complexity
— Computation: M + N + 1 MACs

— Memory: M + N words for previous inputs/outputs and
M + N + 1 words for coefficients

 More regular layout for hardware design



Filter Structure As a Block Diagram

ylk]

w [k]=b, x[k]+
a, ylk]

ylk]=byxk]+
i w [k —m]

e Feed- Note that

* forward M =N
implied
but can be
different
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Yet Another Direct Form IIR

e Rearrange transfer function to be cascade of an an
all-pole IIR filter followed by an FIR filter

_X(2)B(2) _ _X(2)
=T AD =V (z2)B(z) where V(z)= A2)

— Here, v[k] 1s the output of an all-pole filter applied to x[k]:
vik]=x[k]+ D _a, vik—m]

Y (2)

k1= b, v[k—n]

 Implementation complexity (assuming M > N)

— Computation: M+ N+ 1 =2 N+ 1 MACs

— Memory: M + 1 words for current/past values of v[k] and

M+ N+1=2N+ 1 words for coetficients -



Filter Structure As Block Diagram

x[k] ‘ >

forward

ylk]

vIk] = x[k]+ iam vlk —m]

m=1

ylk1=> b, v[k—n]

Note that M = N implied
but they can be different

M=2 yields
a biquad
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Demonstrations (DSP First)

Web site: http://users.ece.gatech.edu/~dspfirst
Chapter 8: IIR Filtering Tutorial ( )

Chapter 8: Connection Betweeen the Z and
Frequency Domains ( )

Chapter 8: Time/Frequency/Z Domain Moves for
IIR Filters ( )
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Review

Stability

* A digital filter is bounded-input bounded-output
(BIBO) stable if for any bounded input x[k] such
that | x[k] | < B < oo, then the filter response y[k] is
also bounded | y[k] | £ B <

* Proposition: A digital filter with an impulse
response of i[k] is BIBO stable if and only if

S k]I <o

n=—oo

— Any FIR filter is stable

— A rational causal IIR filter is stable if and only if its poles
lie inside the unit circle

6-14



Stability

 Rule #1: For a causal sequence, poles are inside the
unit circle (applies to z-transform functions that
are ratios of two polynomials) OR

 Rule #2: Unit circle is in the region of convergence.
(In continuous-time, imaginary axis would be in
region of convergence of Laplace transform.)

° Example: a" l/t[k]i)l 1 1 for ‘Z‘>‘a‘ m

_aZ_

Stable if lal < 1 by rule #1 or equivalently
Stable if lal < 1 by rule #2 because IzI>lal and lal<1

6-15



Z and Laplace Transforms

e Transform difference/differential equations into
algebraic equations that are easier to solve

e Are complex-valued functions of a complex
frequency variable
Laplace: s=0c+j27nf
Z: 7=rel®
 Transform kernels are complex exponentials:
eigenfunctions of linear time-invariant systems
Laplace: e S'=¢0! - Jj20/1 =
Z: k= (re/®y* =

dampening factor oscillation term ©° '



Z and Laplace Transforms

e No unique mapping from Z to Laplace domain
or from Laplace to Z domain

— Mapping one complex domain to another 1s not unique

* One possible mapping is impulse invariance

— Make impulse response of a discrete-time linear time-
invariant (L'TI) system be a sampled version of the
continuous-time LTI system.

Laplace

Z
f1—H@ |1k 7 (e)—LHE— ()

H(s)=H ()| _,
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Impulse Invariance Mapping

e Impulse invariance mappingis z=¢*7

I w . =1= —L:f >— ]
m{s} max max 27_[ s T m{Z}

X SENG) /\
: —— Re(s) \9 — Re(z)
X - O

s=-1+1j=7z=0.198+70.31 (T=15)
s=1+j =7z=1469+j2287(T=15)

s=j2x f Laplace Domain ~ Z Domain

Left-hand plane Inside unit circle

Imaginary axis Unit circle

Right-hand plane Outside unit circle 6 -
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Optional

Impulse Invariance Derivation

ft)= i flklo(—kT) Laplace

Let =€ d ) Z
Sl = H )Y Tk ik — @ 14

- 19



Analog IIR Biquad

e Second-order filter section with 2 poles and 2 zeros
— Transfer function is a ratio of two real-valued polynomials
— Poles and zeros occur 1n conjugate symmetric pairs

* Quality factor: technology independent measure of
sensitivity of pole locations to perturbations

— For an analog biquad with poles at a = j b, where a <0,

2 2
Na“+b 1
= where — <0 <
¢ —2a 2 ¢

— Real poles: b =0 so Q = %2 (exponential decay response)
— Imaginary poles: a = 0 so Q = o (oscillatory response)

6-20



Analog IIR Biquad

 Impulse response with biquad with polesa £j b
with a < 0 but no zeroes: h(t)=Ce* cos(b t+6)
— Pure sinusoid when a = 0 and pure decay when b =0

e Breadboard implementation

— Consider a single pole at —1/(R C). With 1% tolerance on
breadboard R and C values, tolerance of pole location is 2%

— How many decimal digits correspond to 2% tolerance?
— How many bits correspond to 2% tolerance?

— Maximum quality factor is about 25 for implementation of
analog filters using breadboard resistors and capacitors.

=~ 40 (tolerance = 0.2%)

— Integrated circuit implementations can achieve Q.. = 80
6-21

— Switched capacitor filters: Q

max



Digital 1IR Biquad

e Forpolesata +jb=re*i % where r=+a*>+b’is
the pole radius (r < 1 for stability), with y = -2 a:

_ \/(1+r2)2 . yz
2(1-r%)

where %SQ<oo

Q

— Real poles: b=0sor=1Ialand y =+2 r which yields O =
2 (exponential decay response C, a” u[n] + C, n a" u[n])

— Poles on unit circle: r = 1 so Q = oo (oscillatory response)

— Imaginary poles: a =0 so y =0 so 0= 11+

21-7r7

= 40 (extended precision

— 16-bit fixed-point DSPs: QO
accumulators)

max



Analog/Digital IIR Implementation

e (Classical IIR filter designs

Filter of order n will have n/2 conjugate roots if n 1s even or
one real root and (n-1)/2 conjugate roots if n 1s odd

Response 1s very sensitive to perturbations in pole locations

 Robust way to implement an IIR filter
Decompose IIR filter into second-order sections (biquads)
Cascade biquads in order of ascending guality factors

For each pair of conjugate symmetric poles in a biquad,
conjugate zeroes should be chosen as those closest in
Euclidean distance to the conjugate poles



Classical IIR Filter Design

e Classical IIR filter designs differ in the shape of
their magnitude responses

Butterworth: monotonically decreases 1n passband and
stopband (no ripple)

Chebyshev type I: monotonically decreases in passband but
has ripples in the stopband

Chebyshev type II: has ripples in passband but monotonically
decreases 1n the stopband

Elliptic: has ripples in passband and stopband

e (lassical IIR filters have poles and zeros, except
that analog lowpass Butterworth filters are all-pole

e (lassical filters have biquads with high Q factors

6-24



Analog IIR Filter Optimization

e Start with an existing (e.g. classical) filter design

e IIR filter optimization packages from UT Austin
(in Matlab) simultaneously optimize
Magnitude response
Linear phase in the passband
Peak overshoot in the step response
Quality factors

 Web-based graphical user interface (developed as
a senior design project) available at
http://signal.ece.utexas.edu/~bernitz



Analog IIR Filter Optimization

* Design an analog lowpass IIR filter with o, = 0.21
at @, = 20 rad/s and o, = 0.31 at o, = 30 rad/s with

Minimized deviation from linear phase in passband

Minimized peak overshoot in step response

Maximum quality factor of second-order sections is 10

PR

Linearized - g eear + Minimized
phase in L i peak
passband o5 overshoot
1. . -—— Original
.. — Optimized
-3. '-O
= Q poles Zeros Q poles Zeros g
. o v
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. ~Nd
- 61.0 | -0.1636+19.9899 | 0.0+28.0184 10.00 -1.0926+j21.8241 | -1.27254535.5476 8“




