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Digital IIR Filters
• Infinite Impulse Response (IIR) filter has impulse 

response of infinite duration, e.g.

• How to implement the IIR filter by computer?
Let x[k] be the input signal and y[k] the output signal,
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Different Filter Representations
• Difference equation

Recursive computation 
needs y[-1] and y[-2]

For the filter to be LTI,
y[-1] = 0 and y[-2] = 0

• Transfer function
Assumes LTI system

• Block diagram 
representation

Second-order filter section 
(a.k.a. biquad) with 2 
poles and 0 zeros
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Digital IIR Biquad
• Two poles and zero, one, or two zeros

• Take z-transform of biquad structure

• Real coefficients a1, a2, b0, b1, and b2 means poles 
and zeros in conjugate symmetric pairs αααα ± j ββββ
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Digital IIR Filter Design
• Poles near unit circle indicate filter’s passband(s)

• Zeros on/near unit circle indicate stopband(s)
• Biquad with zeros z0 and z1, and poles p0 and p1

Transfer function

Magnitude response
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Digital IIR Biquad Design Examples
• Transfer function

• Poles (X) & zeros (O) in conjugate symmetric pairs
– For coefficients in unfactored transfer function to be real

• Filters below have what magnitude responses?
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A Direct Form IIR Realization
• IIR filters having rational transfer functions

• Direct form realization
– Dot product of vector of N +1

coefficients and vector of current
input and previous N inputs (FIR section)

– Dot product of vector of M coefficients and vector of 
previous M outputs (FIR filtering of previous output values)

– Computation: M + N + 1 MACs
– Memory: M + N words for previous inputs/outputs and

M + N + 1 words for coefficients
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Filter Structure As a Block Diagram
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Another Direct Form IIR Realization
• When N = M,

– Here, Wm(z) = bm X(z) + am Y(z)
– In time domain,

• Implementation complexity
– Computation: M + N + 1 MACs
– Memory: M + N words for previous inputs/outputs and

M + N + 1 words for coefficients

• More regular layout for hardware design
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Filter Structure As a Block Diagram
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Yet Another Direct Form IIR
• Rearrange transfer function to be cascade of an an

all-pole IIR filter followed by an FIR filter

– Here, v[k] is the output of an all-pole filter applied to x[k]:

• Implementation complexity (assuming M ≥≥≥≥ N)
– Computation: M + N + 1 = 2 N + 1 MACs
– Memory: M + 1 words for current/past values of v[k] and

M + N + 1 = 2 N + 1 words for coefficients
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Filter Structure As Block Diagram 
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Demonstrations (DSP First)
• Web site:  http://users.ece.gatech.edu/~dspfirst

• Chapter 8: IIR Filtering Tutorial (Link)
• Chapter 8: Connection Betweeen the Z and 

Frequency Domains (Link) 
• Chapter 8: Time/Frequency/Z Domain Moves for 

IIR Filters (Link) 
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Stability
• A digital filter is bounded-input bounded-output 

(BIBO) stable if for any bounded input x[k] such 
that | x[k] | ≤ B < ∞, then the filter response y[k] is 
also bounded | y[k] | ≤ B < ∞

• Proposition: A digital filter with an impulse 
response of h[k] is BIBO stable if and only if

– Any FIR filter is stable
– A rational causal IIR filter is stable if and only if its poles 

lie inside the unit circle
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Stability
• Rule #1: For a causal sequence, poles are inside the 

unit circle (applies to z-transform functions that 
are ratios of two polynomials)  OR

• Rule #2: Unit circle is in the region of convergence. 
(In continuous-time, imaginary axis would be in 
region of convergence of Laplace transform.)

• Example:

Stable if |a| < 1 by rule #1 or equivalently
Stable if |a| < 1 by rule #2 because |z|>|a| and |a|<1

Review
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Z and Laplace Transforms
• Transform difference/differential equations into 

algebraic equations that are easier to solve
• Are complex-valued functions of a complex 

frequency variable
Laplace:  s = σ + j 2 π f
Z:            z = r e j ω

• Transform kernels are complex exponentials: 
eigenfunctions of linear time-invariant systems
Laplace:  e– s t = e–σ t – j 2 π f t =    e–σ t         e – j 2 π f t

Z:            z–k = (r e j ω)–k =    r–k e– j ω k

dampening factor oscillation term
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Z and Laplace Transforms
• No unique mapping from Z to Laplace domain 

or from Laplace to Z domain
– Mapping one complex domain to another is not unique

• One possible mapping is impulse invariance 
– Make impulse response of a discrete-time linear time-

invariant (LTI) system be a sampled version of the 
continuous-time LTI system.
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Impulse Invariance Mapping
• Impulse invariance mapping is z = e s T

Laplace Domain Z Domain 
Left-hand plane Inside unit circle 
Imaginary axis Unit circle 
Right-hand plane Outside unit circle 
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Impulse Invariance Derivation
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Analog IIR Biquad
• Second-order filter section with 2 poles and 2 zeros

– Transfer function is a ratio of two real-valued polynomials
– Poles and zeros occur in conjugate symmetric pairs

• Quality factor: technology independent measure of 
sensitivity of pole locations to perturbations
– For an analog biquad with poles at a ± j b, where a < 0,

– Real poles: b = 0 so Q = ½ (exponential decay response)
– Imaginary poles: a = 0 so Q = ∞ (oscillatory response)
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Analog IIR Biquad
• Impulse response with biquad with poles a ± j b

with a < 0 but no zeroes:
– Pure sinusoid when a = 0 and pure decay when b = 0

• Breadboard implementation
– Consider a single pole at –1/(R C). With 1% tolerance on 

breadboard R and C values, tolerance of pole location is 2%
– How many decimal digits correspond to 2% tolerance?
– How many bits correspond to 2% tolerance?
– Maximum quality factor is about 25 for implementation of 

analog filters using breadboard resistors and capacitors.
– Switched capacitor filters: Qmax ≈ 40 (tolerance ≈ 0.2%)
– Integrated circuit implementations can achieve Qmax ≈ 80

)      cos( )(  θ+= tbeCth ta
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Digital IIR Biquad
• For poles at a ± j b = r e ± j θθθθ, where                    is 

the pole radius (r < 1 for stability), with y = –2 a:

– Real poles: b = 0 so r = | a | and y = ±2 r which yields Q = 
½ (exponential decay response C0 an u[n] + C1 n an u[n])

– Poles on unit circle: r = 1 so Q = ∞ (oscillatory response)
– Imaginary poles: a = 0 so y = 0 so 

– 16-bit fixed-point DSPs: Qmax ≈ 40 (extended precision 
accumulators)
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Analog/Digital IIR Implementation
• Classical IIR filter designs

Filter of order n will have n/2 conjugate roots if n is even or 
one real root and (n-1)/2 conjugate roots if n is odd 

Response is very sensitive to perturbations in pole locations

• Robust way to implement an IIR filter
Decompose IIR filter into second-order sections (biquads)
Cascade biquads in order of ascending quality factors
For each pair of conjugate symmetric poles in a biquad, 

conjugate zeroes should be chosen as those closest in 
Euclidean distance to the conjugate poles
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Classical IIR Filter Design
• Classical IIR filter designs differ in the shape of 

their magnitude responses
Butterworth: monotonically decreases in passband and 

stopband (no ripple) 
Chebyshev type I: monotonically decreases in passband but 

has ripples in the stopband
Chebyshev type II: has ripples in passband but monotonically 

decreases in the stopband
Elliptic: has ripples in passband and stopband

• Classical IIR filters have poles and zeros, except 
that analog lowpass Butterworth filters are all-pole

• Classical filters have biquads with high Q factors
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Analog IIR Filter Optimization
• Start with an existing (e.g. classical) filter design
• IIR filter optimization packages from UT Austin 

(in Matlab) simultaneously optimize
Magnitude response
Linear phase in the passband
Peak overshoot in the step response
Quality factors 

• Web-based graphical user interface (developed as 
a senior design project) available at

http://signal.ece.utexas.edu/~bernitz



Analog IIR Filter Optimization
• Design an analog lowpass IIR filter with δδδδp = 0.21 

at ωωωωp =  20 rad/s and δδδδs = 0.31 at ωωωωs = 30 rad/s with
Minimized deviation from linear phase in passband
Minimized peak overshoot in step response
Maximum quality factor of second-order sections is 10

Linearized
phase in 

passband

Minimized 
peak 
overshoot

Original
Optimized

0.0±j28.0184-0.1636±j19.989961.0

0.0±j20.2479-5.3533±j16.95471.7

zerospolesQ

in
iti

al

-1.2725±j35.5476-1.0926±j21.824110.00

-3.4232±j28.6856-11.4343±j10.50920.68

zerospolesQ

op
tim

iz
ed


