EE345S Real-Time Digital Signal Processing Lab Spring 2006

## Infinite Impulse Response Filters

- Prof. Brian L. Evans
- Dept. of Electrical and Computer Engineering
- The University of Texas at Austin


## Digital IIR Filters

- Infinite Impulse Response (IIR) filter has impulse response of infinite duration, e.g.

$$
h[k]=\left(\frac{1}{2}\right)^{k} u[k] \stackrel{Z}{\longleftrightarrow} H(z)=\sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k} z^{-k}=\frac{1}{2}+\frac{1}{4} z^{-1}+\ldots=\frac{1}{1-\frac{1}{2} z^{-1}}
$$

- How to implement the IIR filter by computer?

Let $x[k]$ be the input signal and $y[k]$ the output signal,

$$
\begin{aligned}
& H(z)=\frac{Y(z)}{X(z)} \Rightarrow Y(z)=H(z) X(z)=\frac{1}{1-\frac{1}{2} z^{-1}} X(z) \Rightarrow Y(z)-\frac{1}{2} z^{-1} Y(z)=X(z) \\
& Y(z)-\frac{1}{2} z^{-1} Y(z)=X(z) \Rightarrow y[k]-\frac{1}{2} y[k-1]=x[k] \Rightarrow y[k]=\frac{1}{2} y[k-1]+x[k] \\
& \text { Recursively compute output, given } y[-1] \text { and } x[k]
\end{aligned}
$$

## Different Filter Representations

- Difference equation $y[k]=\frac{1}{2} y[k-1]+\frac{1}{8} y[k-2]+x[k]$
Recursive computation needs $y[-1]$ and $y[-2]$
For the filter to be LTI,

$$
y[-1]=0 \text { and } y[-2]=0
$$

- Transfer function

Assumes LTI system

$$
\begin{aligned}
& Y(z)=\frac{1}{2} z^{-1} Y(z)+\frac{1}{8} z^{-2} Y(z)+X(z) \\
& H(z)=\frac{Y(z)}{X(z)}=\frac{1}{1-\frac{1}{2} z^{-1}-\frac{1}{8} z^{-2}}
\end{aligned}
$$

- Block diagram representation


Second-order filter section (a.k.a. biquad) with 2 poles and 0 zeros

Poles at -0.183 and +0.683

## Digital IIR Biquad

- Two poles and zero, one, or two zeros

- Take $z$-transform of biquad structure

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{V(z)}{X(z)} \frac{Y(z)}{V(z)}=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}}{1-a_{1} z^{-1}-a_{2} z^{-2}}
$$

- Real coefficients $a_{1}, a_{2}, b_{0}, b_{1}$, and $b_{2}$ means poles and zeros in conjugate symmetric pairs $\alpha \pm j \beta^{6-4}$


## Digital IIR Filter Design

- Poles near unit circle indicate filter's passband(s)
- Zeros on/near unit circle indicate stopband(s)
- Biquad with zeros $z_{0}$ and $z_{1}$, and poles $p_{0}$ and $p_{1}$

Transfer function $\quad H(z)=C \frac{\left(z-z_{0}\right)\left(z-z_{1}\right)}{\left(z-p_{0}\right)\left(z-p_{1}\right)}$
Magnitude response $\left|H\left(e^{j \omega}\right)\right|=\left|C \frac{\left(e^{j \omega}-z_{0}\right)\left(e^{j \omega}-z_{1}\right)}{\left(e^{i \omega}-p_{0}\right)\left(e^{i \omega}-p_{1}\right)}\right|$

$$
\begin{aligned}
& |a-b| \text { is distance } \\
& \text { between complex } \\
& \text { numbers } a \text { and } b
\end{aligned}
$$

$$
\begin{array}{r}
\left|H\left(e^{j \omega}\right)\right|=|C| \frac{\left|e^{j \omega}-z_{0}\right|\left|e^{j \omega}-z_{1}\right|}{\left|e^{j \omega}-p_{0}\right|\left|e^{j \omega}-p_{1}\right|} \\
\begin{array}{c}
\text { Distance from point on unit } \\
\text { circle } \boldsymbol{e}^{j \omega} \text { and pole location } \boldsymbol{p}_{0}
\end{array}
\end{array}
$$

## Digital IIR Biquad Design Examples

- Transfer function $H(z)=C \frac{\left(z-z_{0}\right)\left(z-z_{1}\right)}{\left(z-p_{0}\right)\left(z-p_{1}\right)}=C \frac{\left(1-z_{0} z^{-1}\right)\left(1-z_{1} z^{-1}\right)}{\left(1-p_{0} z^{-1}\right)\left(1-p_{1} z^{-1}\right)}$
- Poles $(\mathbf{X}) \&$ zeros $(\mathbf{O})$ in conjugate symmetric pairs
- For coefficients in unfactored transfer function to be real
- Filters below have what magnitude responses?



lowpass highpass bandpass bandstop allpass notch?


## A Direct Form IIR Realization

- IIR filters having rational transfer functions
$H(z)=\frac{Y(z)}{X(z)}=\frac{B(z)}{A(z)}=\frac{b_{0}+b_{1} z^{-1}+\ldots+b_{N} z^{-N}}{1-a_{1} z^{-1}-\ldots-a_{M} z^{-M}} \quad \neg Y(z)\left(1-\sum_{m=1}^{M} a_{m} z^{-m}\right)=X(z) \sum_{n=0}^{N} b_{n} z^{-n}$
- Direct form realization
- Dot product of vector of $N+1 \quad y[k]=\sum_{n=0}^{N} b_{k}$
coefficients and vector of current $\xrightarrow{n}=$ input and previous $N$ inputs (FIR section)
- Dot product of vector of $M$ coefficients and vector of previous $M$ outputs (FIR filtering of previous output values)
- Computation: $M+N+1$ MACs
- Memory: $M+N$ words for previous inputs/outputs and $M+N+1$ words for coefficients


## Filter Structure As a Block Diagram



## Another Direct Form IIR Realization

- When $N=M$,

$$
Y(z)=b_{0} X(z)+\sum_{m=1}^{N}\left(b_{m} X(z)+a_{m} Y(z)\right) z^{-m}=b_{0} X(z)+\sum_{m=1}^{N} W_{m}(z) z^{-m}
$$

- Here, $W_{m}(z)=b_{m} X(z)+a_{m} Y(z)$
- In time domain, $w_{m}[k]=b_{m} x[k]+a_{m} y[k]$

$$
y[k]=b_{0} x[k]+\sum_{m=1}^{M} w_{m}[k-m]
$$

- Implementation complexity
- Computation: $M+N+1$ MACs
- Memory: $M+N$ words for previous inputs/outputs and $M+N+1$ words for coefficients
- More regular layout for hardware design


## Filter Structure As a Block Diagram



## Yet Another Direct Form IIR

- Rearrange transfer function to be cascade of an an all-pole IIR filter followed by an FIR filter

$$
Y(z)=\frac{X(z) B(z)}{A(z)}=V(z) B(z) \text { where } V(z)=\frac{X(z)}{A(z)}
$$

- Here, $v[k]$ is the output of an all-pole filter applied to $x[k]$ :

$$
\begin{aligned}
& v[k]=x[k]+\sum_{m=1}^{M} a_{m} v[k-m] \\
& y[k]=\sum_{n=0}^{N} b_{n} v[k-n]
\end{aligned}
$$

- Implementation complexity (assuming $M \geq N$ )
- Computation: $M+N+1=2 N+1$ MACs
- Memory: $M+1$ words for current/past values of $v[k]$ and $M+N+1=2 N+1$ words for coefficients


## Filter Structure As Block Diagram



## Demonstrations (DSP First)

- Web site: http://users.ece.gatech.edu/~dspfirst
- Chapter 8: IIR Filtering Tutorial (Link)
- Chapter 8: Connection Betweeen the $\mathbf{Z}$ and Frequency Domains (Link)
- Chapter 8: Time/Frequency/Z Domain Moves for IIR Filters (Link)


## Stability

- A digital filter is bounded-input bounded-output (BIBO) stable if for any bounded input $x[k]$ such that $|x[k]| \leq B<\infty$, then the filter response $y[k]$ is also bounded $|y[k]| \leq B<\infty$
- Proposition: A digital filter with an impulse response of $h[k]$ is BIBO stable if and only if

$$
\sum_{n=-\infty}^{\infty}|h[k]|<\infty
$$

- Any FIR filter is stable
- A rational causal IIR filter is stable if and only if its poles lie inside the unit circle


## Stability

- Rule \#1: For a causal sequence, poles are inside the unit circle (applies to $z$-transform functions that are ratios of two polynomials) OR
- Rule \#2: Unit circle is in the region of convergence. (In continuous-time, imaginary axis would be in region of convergence of Laplace transform.)
- Example:

$$
a^{k} u[k] \stackrel{Z}{\leftrightarrow} \frac{1}{1-a z^{-1}} \text { for }|z|>|a|
$$



Stable if $|a|<1$ by rule \#1 or equivalently
Stable if $|a|<1$ by rule \#2 because $|z|>|a|$ and $|a|<1$

## Z and Laplace Transforms

- Transform difference/differential equations into algebraic equations that are easier to solve
- Are complex-valued functions of a complex frequency variable
Laplace: $s=\sigma+j 2 \pi f$
$Z: \quad z=r e^{j \omega}$
- Transform kernels are complex exponentials: eigenfunctions of linear time-invariant systems
$\begin{array}{lll}\text { Laplace: } & e^{-s t}=e^{-\sigma t-j 2 \pi f t}= & e^{-\sigma t} \\ \text { Z: } & z^{-k}=\left(r e^{j \omega}\right)^{-k} & =\left(\begin{array}{l}r^{-k}\end{array}\right)\end{array}$
dampening factor oscillation term


## Z and Laplace Transforms

- No unique mapping from $Z$ to Laplace domain or from Laplace to Z domain
- Mapping one complex domain to another is not unique
- One possible mapping is impulse invariance
- Make impulse response of a discrete-time linear timeinvariant (LTI) system be a sampled version of the continuous-time LTI system.


$$
H(s)=\left.H(z)\right|_{z=e^{s T}}
$$

## Impulse Invariance Mapping

- Impulse invariance mapping is $z=e^{s T}$



## Impulse Invariance Derivation

$$
\begin{array}{lc}
\tilde{f}(t)=\sum_{k=0}^{\infty} f[k] \delta(t-k T) & \text { Laplace } \\
\tilde{y}(t)=\sum_{k=0}^{\infty} y[k] \delta(t-k T) & \tilde{f}(t) \longrightarrow H\left(e^{s T}\right) \longrightarrow \tilde{y}(t) \\
\tilde{Y}(s)=H(s) \tilde{F}(s) \\
\sum_{k=0}^{\infty} y[k]\left(e^{s T}\right)^{-k}=H(s) \sum_{k=0}^{\infty} f[k] e^{-k T s} & \\
\text { Let } z=e^{s T}: & \\
\sum_{k=0}^{\infty} y[k] z^{-k}=H(z) \sum_{k=0}^{\infty} f[k] z^{-k} & f[k] \rightarrow H(z) \rightarrow y[k] \\
Y(z)=H(z) F(z) &
\end{array}
$$

## Analog IIR Biquad

- Second-order filter section with 2 poles and 2 zeros
- Transfer function is a ratio of two real-valued polynomials
- Poles and zeros occur in conjugate symmetric pairs
- Quality factor: technology independent measure of sensitivity of pole locations to perturbations
- For an analog biquad with poles at $a \pm j b$, where $a<0$,

$$
Q=\frac{\sqrt{a^{2}+b^{2}}}{-2 a} \text { where } \frac{1}{2} \leq Q<\infty
$$

- Real poles: $b=0$ so $Q=1 / 2$ (exponential decay response)
- Imaginary poles: $a=0$ so $Q=\infty$ (oscillatory response)


## Analog IIR Biquad

- Impulse response with biquad with poles $a \pm j b$ with $a<0$ but no zeroes: $\quad h(t)=C e^{a t} \cos (b t+\theta)$
- Pure sinusoid when $a=0$ and pure decay when $b=0$
- Breadboard implementation
- Consider a single pole at $-1 /(R C)$. With $1 \%$ tolerance on breadboard $R$ and $C$ values, tolerance of pole location is $2 \%$
- How many decimal digits correspond to $2 \%$ tolerance?
- How many bits correspond to $2 \%$ tolerance?
- Maximum quality factor is about 25 for implementation of analog filters using breadboard resistors and capacitors.
- Switched capacitor filters: $Q_{\max } \approx 40$ (tolerance $\approx 0.2 \%$ )
- Integrated circuit implementations can achieve $Q_{\max } \approx 80$


## Digital IIR Biquad

- For poles at $a \pm j b=r e^{ \pm j \theta}$, where $r=\sqrt{a^{2}+b^{2}}$ is the pole radius ( $r<1$ for stability), with $y=-2 a$ :

$$
Q=\frac{\sqrt{\left(1+r^{2}\right)^{2}-y^{2}}}{2\left(1-r^{2}\right)} \text { where } \frac{1}{2} \leq Q<\infty
$$

- Real poles: $b=0$ so $r=|a|$ and $y= \pm 2 r$ which yields $Q=$ $1 / 2$ (exponential decay response $\left.C_{0} a^{n} u[n]+C_{1} n a^{n} u[n]\right)$
- Poles on unit circle: $r=1$ so $Q=\infty$ (oscillatory response)
- Imaginary poles: $a=0$ so $y=0$ so

$$
Q=\frac{1}{2} \frac{1+r^{2}}{1-r^{2}}
$$

- 16-bit fixed-point DSPs: $Q_{\text {max }} \approx 40$ (extended precision accumulators)


## Analog/Digital IIR Implementation

- Classical IIR filter designs

Filter of order $n$ will have $n / 2$ conjugate roots if $n$ is even or one real root and ( $n-1$ )/2 conjugate roots if $n$ is odd
Response is very sensitive to perturbations in pole locations

- Robust way to implement an IIR filter

Decompose IIR filter into second-order sections (biquads)
Cascade biquads in order of ascending quality factors
For each pair of conjugate symmetric poles in a biquad, conjugate zeroes should be chosen as those closest in Euclidean distance to the conjugate poles

## Classical IIR Filter Design

- Classical IIR filter designs differ in the shape of their magnitude responses
Butterworth: monotonically decreases in passband and stopband (no ripple)
Chebyshev type I: monotonically decreases in passband but has ripples in the stopband
Chebyshev type II: has ripples in passband but monotonically decreases in the stopband
Elliptic: has ripples in passband and stopband
- Classical IIR filters have poles and zeros, except that analog lowpass Butterworth filters are all-pole
- Classical filters have biquads with high $\mathbf{Q}$ factors


## Analog IIR Filter Optimization

- Start with an existing (e.g. classical) filter design
- IIR filter optimization packages from UT Austin (in Matlab) simultaneously optimize
Magnitude response
Linear phase in the passband
Peak overshoot in the step response
Quality factors
- Web-based graphical user interface (developed as a senior design project) available at http://signal.ece.utexas.edu/~bernitz


## Analog IIR Filter Optimization

- Design an analog lowpass IIR filter with $\delta_{p}=\mathbf{0 . 2 1}$ at $\omega_{p}=20 \mathrm{rad} / \mathrm{s}$ and $\delta_{s}=0.31$ at $\omega_{s}=30 \mathrm{rad} / \mathrm{s}$ with Minimized deviation from linear phase in passband
Minimized peak overshoot in step response
Maximum quality factor of second-order sections is 10


