INTRODUCTION TO DIGITAL SIGNAL PROCESSORS (DSPs)

Accumulator architecture

Memory-register architecture

register file on-chip memory

Prof. Brian L. Evans

Contributions by Niranjan Damera-Venkata and Magesh Valliappan

Embedded Signal Processing Laboratory The University of Texas at Austin Austin, TX 78712

http://signal.ece.utexas.edu/

Outline

- Signal processing applications
- Conventional DSP architecture
- Pipelining in DSP processors
- RISC vs. DSP processor architectures
- TI TMS320C6000 DSP architecture introduction
- Signal processing on general-purpose processors
- Conclusion

Signal Processing Applications

• Embedded system demand in world: volume, volume, ...

- 400 Million units/year: automobiles, PCs, cell phones
- *30 Million units/year:* ADSL modems and printers

Consumer electronics products

Product	Average	Annual
	Unit Price	Revenue
Wireless phone	\$136	\$11.5 Billion
Digital cameras	\$271	\$ 4.2 Billion
Portable CD players	\$ 48	\$ 0.9 Billion
MP3 players	\$137	\$ 0.7 Billion
Compact audio systems	\$111	\$ 0.5 Billion

Source: CEA Market Reseach (US). Data for 2004 calendar year.

• How much should an embedded processor cost?

Signal Processing Applications

Embedded system cost and input/output rates

- Low-cost, low-throughput: sound cards, cell phones, MP3 players, car audio, guitar effects
- Medium-cost, medium-throughput: low-end printers, disk drives, PDAs, ADSL modems, digital cameras, video conferencing
- *High-cost, high-throughput:* high-end printers, audio mixing boards, wireless basestations, high-end video conferencing, 3-D sonar, 3-D reconstructions from 2-D slices (e.g. X-rays) in medical imaging
- Embedded processor requirements
 - Inexpensive with small area and volume
 - Predictable input/output (I/O) rates to/from processor
 - Power constraints (severe for handheld devices)

Single

DSP

Single DSP +

Coprocessor

Multiple

DSPs

Conventional DSP Processors

- Low cost: as low as \$2/processor in volume
- Deterministic interrupt service routine latency guarantees predictable input/output rates
 - On-chip direct memory access (DMA) controllers
 - Processes streaming input/output separately from CPU
 - Sends interrupt to CPU when block has been read/written
 - Ping-pong buffering
 - CPU reads/writes buffer 1 as DMA reads/writes buffer 2
 - After DMA finishes buffer 2, roles of buffers 1 & 2 switch
- Low power consumption: 10-100 mW
 - ► TI TMS320C54 0.32 mA/MIP → 76.8 mW at 1.5 V, 160 MHz
 - TI TMS320C55 0.05 mA/MIP \rightarrow 22.5 mW at 1.5 V, 300 MHz

Based on conventional (pre-1996) architecture

Conventional DSP Architecture

- Multiply-accumulate (MAC) in 1 instruction cycle
- Harvard architecture for fast on-chip I/O
 - Data memory/bus separate from program memory/bus
 - One read from program memory per instruction cycle
 - Two reads/writes from/to data memory per inst. cycle
- Instructions to keep pipeline (3-6 stages) full
 - Zero-overhead looping (one pipeline flush to set up)
 - Delayed branches
- Special addressing modes supported in hardware
 - Bit-reversed addressing (e.g. fast Fourier transforms)
 - Modulo addressing for circular buffers (e.g. filters)

Conventional DSP Architecture (con't)

- Buffer of length *K*
 - Used in finite and infinite impulse response filters

Linear buffer

- Sort by time index
- Update: discard oldest data, copy old data left, insert new data

Circular buffer

- Oldest data index
- Update: insert new data at oldest index, update oldest index

Modulo Addressing Using a Circular Buffer

Conventional DSP Processors Summary

	Fixed-Point	Floating-Point		
Cost/Unit	\$2 - \$79	\$3 - \$381		
Architecture	Accumulator	load-store or		
		memory-register		
Registers	2-4 data	8 or 16 data		
	8 address	8 or 16 address		
Data Words	16 or 24 bit integer	32 bit integer and		
	and fixed-point	fixed/floating-point		
On-Chip	2-64 kwords data	8-64 kwords data		
Memory	2-64 kwords program	8-64 kwords program		
Address	16-128 kw data	$16 \mathrm{Mw} - 4 \mathrm{Gw} \mathrm{data}$		
Space	16-64 kw program	16 Mw – 4 Gw program		
Compilers	C, C++ compilers;	C, C++ compilers;		
	poor code generation	better code generation		
Examples	TI TMS320C5000;	TI TMS320C30;		
	Freescale DSP56000	Analog Devices SHARC		

Conventional DSP Processor Families

Floating-point DSPs

• Used in initial prototyping of algorithms

DSP Market (est.)Fixed-point95%Floating-point5%

- Resurgence due to professional and car audio
- Different on-chip configurations in each family
 - Size and map of data and program memory
 - A/D, input/output buffers, interfaces, timers, and D/A
- Drawbacks to conventional DSP processors
 - No byte addressing (needed for images and video)
 - Limited on-chip memory
 - Limited addressable memory on fixed-point DSPs (exceptions include Freescale 56300 and TI C5409)
 - Non-standard C extensions for fixed-point data type

Pipelining

Pipelining

- •Process instruction stream in stages (as stages of assembly on a manufacturing line)
- •Increase throughput

Managing Pipelines

- •Compiler or programmer
- •Pipeline interlocking

Pipelining: Operation

Time-stationary pipeline model

- Programmer controls each cycle
- Example: Freescale DSP56001 (has separate X/Y data memories/registers)

MAC X0,Y0,A X: (R0)+,X0 Y: (R4)-,Y0

Data-stationary pipeline model

- Programmer specifies data operations
- Example: TI TMS320C30

MPYF *++AR0(1), *++AR1(IR0), R0

- Interlocked pipeline
 - Protection" from pipeline effects
 - May not be reported by simulators: inner loops may take extra cycles

MAC means multiplication-accumulation.

Pipelining: Hazards

- A control hazard occurs when a branch instruction is decoded
 - Processor "flushes" the pipeline, or
 - Use delayed branch (expose pipeline)
- A data hazard occurs because an operand cannot be read yet
 - Intended by programmer, or
 - Interlock hardware inserts "bubble"
 - TI TMS320C5000 (20 CPU & 16 I/O registers, one accumulator, and one address pointer ARP implied by *)

→ LAR	AR2,	ADDR	;	load address reg.
LACC	*_		;	load accumulator w/
			;	contents of AR2

1 -12

LAR: 2 cycles to update AR2 & ARP; need NOP after it

Pipelining: Avoiding Control Hazards

TI TMS320C6000 DSP Architecture

TI TMS320C6000 Instruction Set

C6000 Instruction Set by Functional Unit

<u>.S Unit</u>		<u>.L Unit</u>		<u>.D Unit</u>	
ADD	NEG	ABS	NOT	ADD	ST
ADDK	NOT	ADD	OR	ADDA	SUB
ADD2	OR	AND	SADD	LD	SUBA
AND	SET	CMPEQ	SAT	MV	ZERO
В	SHL	CMPGT	SSUB	NEG	
CLR	SHR	CMPLT	SUB		
EXT	SSHL	LMBD	SUBC	<u>.M</u>	<u>Unit</u>
MV	SUB	MV	XOR	MPY	SMPY
MVC	SUB2	NEG	ZERO	MPYH	SMPYH
MVK	XOR	NORM			
MVKH	ZERO			<u>O</u>	t <u>her</u>
				NOP	IDLE

Six of the eight functional units can perform integer add, subtract, and move operations

TI TMS320C6000 Instruction Set

<u>Arithmetic</u>	<u>Logical</u>	Data			
ABS	AND	<u>Management</u>			
ADD	CMPEQ	LD			
ADDA	CMPGT	MV			
ADDK	CMPLT	MVC			
ADD2	NOT	MVK			
MPY	OR	MVKH			
MPYH	SHL	ST			
NEG	SHR				
SMPY	SSHL	Program			
SMPYH	XOR	<u>Control</u>			
SADD		В			
SAT	Bit	IDLE			
SSUB	<u>Management</u>	NOP			
SUB	CLR				
SUBA	EXT	C6000 Instruc	ction		
SUBC	LMBD	Set by Category			
SUB2	NORM	(un)signed multiplication			
ZERO	SET	saturation/packed arithmetic			

C6000 vs. C5000 Addressing Modes

 Immediate The operand is part of the 	<i>TI C5000</i>	<i>TI C6000</i>
instruction	ADD #0FFh	add .L1 -13,A1,A6
Register		
 Operand is specified in a register 	(implied)	add .L1 A7,A6,A7
Direct		
 Address of operand is part of the instruction (added to imply memory page) 	ADD 010h	not supported
Indirect		
 Address of operand is stored in a register 	ADD *	ldw .D1 *A5++[8],A1
		1 -21

TI TMS320C6700 Extensions **C6700 Floating Point Extensions by Unit** .S Unit .L Unit ABSDP CMPLTSP ADDDP **INTSP** ABSSP RCPDP ADDSP SPINT CMPEQDP RCPSP DPINT **SPTRUNC** CMPEQSP RSARDP DPSP **SUBDP** CMPGTDP RSQRSP DPTRUNC SUBSP **SPDP** CMPGTSP **INTDP CMPLTDP** .M Unit **MPYDP MPYID** .D Unit ADDAD LDDW MPYI **MPYSP** Four functional units perform IEEE single-precision (SP) and doubleprecision (DP) floating-point add, subtract, and move.

Operations beginning with R are reciprocal (i.e. 1/x) calculations.

Selected TMS320C6700 DSPs

DSP	MHz	MIPS	Data (kbits)	Program (kbits)	Level 2 (kbits)	Price	Applications
C6701	150	1200	512	512	0	\$ 82	C6701 EVM board
C6711	150	1200	32	32	512	\$ 22	C6711 DSK board
	167	1336				\$ 20	
	250	2000				\$ 19	
C6712	150	1200	32	32	512	\$ 14	
C6713	167	1336	32	32	1000	\$ 21	
	225	1800	32	32	1000	\$ 28	C6713 DSK board
	300	2400	32	32	1000	\$ 39	
C6722	250	2000	1000	3072	256	\$ 16	Professional Audio
C6726	250	2000	1000	3072	256	\$ 19	Professional Audio

DSK means DSP Starter Kit. EVM means Evaluation Module. Unit price is for 1,000 units. Prices effective June 3, 2005. For more information: http://www.ti.com

Digital Signal Processor Cores

- Application Specific Integrated Circuit (ASIC)
 - Programmable DSP core
 - RAM
 - ROM
 - Standard cells
 - Codec
 - Peripherals
 - Gate array
 - Microcontroller core

General Purpose Processors

Multimedia applications on PCs

- Video, audio, graphics and animation
- Repetitive parallel sequences of instructions
- Single Instruction Multiple Data (SIMD)
 - One instruction acts on multiple data in parallel
 - Well-suited for graphics
- Native signal processing extensions use SIMD
 - Sun Visual Instruction Set [1995] (UltraSPARC 1/2)
 - Intel MMX [1996] (Pentium I/II/III/IV)
 - Intel Streaming SIMD Extensions (Pentium III)

Concluding Remarks

Digital signal processor market

\$9.5B '05 estimated

- ▶ 40% annual growth 1990-2000: #1 in semiconductor market
- Worldwide revenue: \$4.4B '99, \$6.1B '00, \$4.5B '01, \$4.9B '02, \$6.1B '03, \$8.0B '04 (est. annual growth of 23% for 2003-08)
- ▶ 2001: 40% TI, 16% Agere, 12% Freescale, 8% Analog Dev.
- 2002: 43% TI, 14% Freescale, 14% Agere, 9% Analog Dev.
- Source: Forward Concepts (http://www.fwdconcepts.com)
- Independent processor benchmarking by industry
 - Berkeley Design Technology Inc. http://www.bdti.com
 - Embedded Microproc. Benchmark Consortium www.eembc.org
- Web resources
 - Newsgroup comp.dsp: FAQ http://www.bdti.com/faq/dsp_faq.html
 - Embedded processors and systems: http://www.eg3.com
 - On-line courses: http://www.techonline.com