EE 345S Real-Time Digital Signal Processing Lab

Spring 2006

Introduction

Prof. Güner Arslan Dept. of Electrical and Computer Engineering The University of Texas at Austin

Lecture 0

http://courses.utexas.edu/

Outline

- Introduction
- Communication systems
- Single carrier transceiver
 Sinusoidal generation
 Digital filters
- Multicarrier transceiver
- Conclusion
- Optional slides
 - Data scramblers
 - Modulation

Instructional Staff

• Prof. Güner Arslan

Senior Systems Design Engineer at Silicon Labs

Adjunct Faculty in ECE

Research Areas: digital signal processing, communication systems, embedded systems

Office hours: W 5:00 – 7:00 PM ENS 620B

- Teaching assistants
 - Alex Olson Head TA
 - Ahmad Sheikh
 - Daifeng Wang

Overview

Objectives

Build intuition for signal processing concepts Translate signal processing concepts into real-time digital communications software

• Lecture: breadth (three hours/week)

Digital signal processing algorithms Digital communication systems Digital signal processor architectures

• Laboratory: depth (three hours/week)

Deliver voiceband transceiver "Design is the science of tradeoffs" (Prof. Yale Patt) Test/validate implementation

Pre-Requisites

• Pre-Requisites

EE 438 Electronics I: test signal generation, measurement and analysis of transfer functions and frequency responses (pre-requisite is *EE 313 Linear Systems and Signals*)

EE 319K Intro. to Microcontrollers: assembly and C languages, microprocessor organization, quantization

• Co-Requisites

EE 351K Probability, Statistics, and Random Processes:
Gaussian and uniform distributions, noise, autocorrelation, power spectrum, filtering noise, signal-to-noise ratio
EE 333T Engineering Communication: technical writing

Detailed Topics

- Digital signal processing algorithms/applications
 Signals, sampling, and filtering (EE 313)
 Transfer functions and frequency responses (EE 313/438)
 Quantization (EE 319K), noise shaping, and data converters
- Digital communication algorithms/applications
 Analog modulation/demodulation (EE 313)
 Digital modulation/demod, pulse shaping, and pseudo-noise
 Multicarrier modulation: ADSL and wireless LAN systems
- Digital signal processor (DSP) architectures

Assembly language, interfacing, and pipelining (EE 319K) Harvard architecture and special addressing modes Real-time programming and modern DSP architectures

Which Digital Signal Processor?

- **Fixed-point DSPs for high-volume products** Battery-powered: cell phones, digital still cameras ... Wall-powered: ADSL modems, cellular basestations ...
- Fixed-point representations and calculations
 Fractional data ∈ [-1, 1) and integer data
 Non-standard C extensions for fractional data
 Converting floating-point to fixed-point
 Manual tracking of binary point is tedious

• Floating-point DSPs

Shorter prototyping time Feasibility for fixed-point DSP realization Based on slides by Prof. Brian L. Evans

Required Textbooks

• C. R. Johnson, Jr., and W. A. Sethares, *Telecommunication* Breakdown, Prentice Hall, 2004

Introduction to digital communications systems and transceiver design Tons of Matlab examples

Rick Johnson Bill Sethares (Cornell)

(Wisconsin)

• S. A. Tretter, *Comm. System Design using* **DSP** Algorithms with Lab Experiments for the TMS320C6701 & TMS320C6711, 2003

Assumes DSP theory and algorithms Assumes access to C6000 reference manuals Errata/code: http://www.ece.umd.edu/~tretter

Steven Tretter (Maryland)

Required C6000 Reference Manuals

- Code Composer User's Guide (328B) www-s.ti.com/sc/psheets/spru328b/spru328b.pdf
- Optimizing C Compiler (187L) www-s.ti.com/sc/psheets/spru187l/spru187l.pdf
- **Programmer's Guide (198G)** www-s.ti.com/sc/psheets/spru198g/spru198g.pdf

Based on

- Evaluation Module Board User's Guide (269F) www-s.ti.com/sc/psheets/spru269f/spru269f.pdf
- CPU & Instruction Set Reference Guide (189F) www-s.ti.com/sc/psheets/spru189f/spru189f.pdf

Download for reference but read at your own risk

TI software development environment

Supplemental (Optional) Textbooks

• J. H. McClellan, R. W. Schafer, and M. A. Yoder, **DSP First:** A Multimedia Approach, 1998 DSP theory and algorithms at sophomore level Many in-class demonstrations are from DSP First Demos: http://users.ece.gatech.edu/~dspfirst/

Ronald Schafer's **1975 book** founded **DSP** field

• B. P. Lathi, *Linear Systems & Signals*, either edition Introduction to signal processing theory Textbook for EE 313 Linear Systems and Signals

• R. Chassaing, DSP Applications Using C and the TMS320C6x DSK, 2002 C6000 DSP Starter Kit (DSK) external board via serial port DSP processor tutorial with source code examples

Related BS Degree Technical Areas

Communication/networkingSEE345S Real-Time DSP LabEE360K Digital Comm.EE371M Comm.SystemsEE372N Telecom.NE₩ EE379K-15 Info.EE379K-15 Info.EE379K-19 Net.EE379K Wireless Comm Lab

Undergraduates may request permission to take grad courses

EE345S may be used for advanced laboratory pre-requisite for senior design project. Based on slides by Prof. Brian L. Evans

Signal/image processing

EE345S Real-Time DSP Lab
EE351M DSP
EE371D Neural Nets
EE371R Digital Image and Video Processing

Embedded Systems

EE345M Embedded and Real-Time Systems
EE345S Real-Time DSP Lab
EE360M Dig. Sys. Design
EE360N Comp. Arch.
EE360R VLSI CAD

UT Comm./DSP Graduate Courses

- Communications theory
- EE381K-11 Wireless Comm EE381K-2 Digital Comm. EE381V Advanced Wireless: Modulation and Multiple Access EE381V Advanced Wireless: Space-Time Communications EE381V Channel Coding **Courses in italics are**
 - **Signal processing theory EE381K-8 DSP**
 - EE381K-14 Multidim. DSP

offered every other year

EE381K-9 Advanced DSP EE381L Time Series Analysis

Other related courses

EE380K System Theory EE381K-7 Info. Theory EE381J Probability and Stochastic Processes I EE382C-9 Embedded Software EE 382V VLSI Comm. Based on slides by Prof. Brian L. Evans

Grading

• Calculation of numeric grades

15% midterm #1
15% midterm #2 (not cumulative) wv
10% homework (four assignments)
60% laboratory (6 pre-lab quizzes + 7 reports)

Past average GPA is 3.1

www.UTLife.com

No final

exam

• Laboratory component

Each student takes pre-lab quiz on course Web site alone Students work in teams of two on lab assignments/reports TAs grade individual attendance and participation TAs assign team members same lab report grade TAs assign individual grades for attendance/participation Lowest pre-lab quiz and lowest lab report dropped

Academic Integrity

• Homework assignments

Discuss homework questions with others Be sure to submit your own *independent* solution Turning in two identical (or nearly identical) homework sets is considered *academic dishonesty*

Laboratory reports

Should only contain work of those named on reportIf any other work is included, then reference sourceCopying information from another source without giving proper reference and quotation is *plagiarism*Source code must be original work

• Why does academic integrity matter? *Enron*!

Communication Systems

- Information sources
 - Message signal m(t) is the information source to be sent
 - Possible information sources include voice, music, images, video, and data, which are baseband signals
 - Baseband signals have power concentrated near DC
- Basic structure of an analog communication system is shown below

Transmitter

• Signal processing

- Conditions the message signal
- Lowpass filtering to make sure that the message signal occupies a specific bandwidth, e.g. in AM and FM radio, each station is assigned a slot in the frequency domain.
- In a digital communications system, we might add redundancy to the message bit stream *m*[*n*] to assist in error detection (and possibly correction) in the receiver

Transmitter

- Carrier circuits
 - Convert baseband signal into a frequency band appropriate for the channel
 - Uses analog and/or digital modulation

Communication Channel

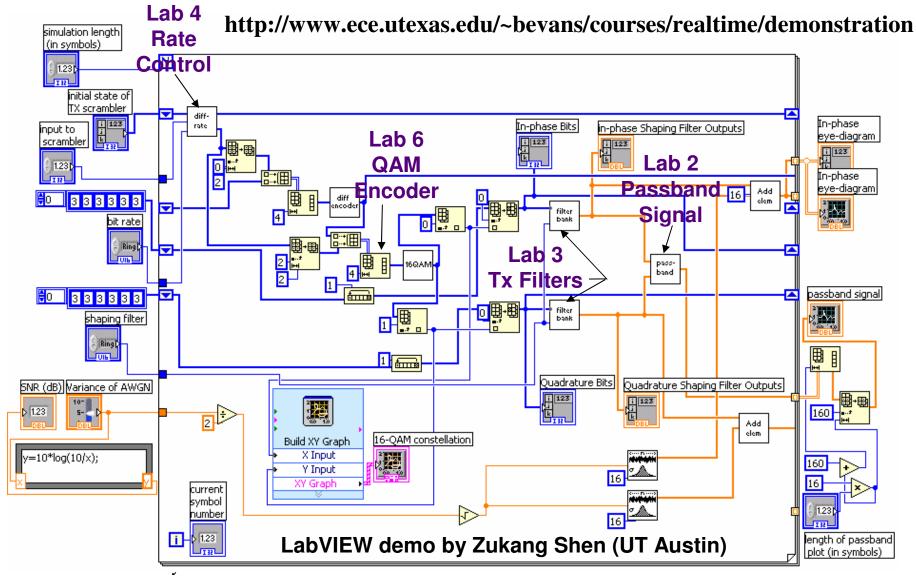
- Transmission medium
 - Wireline (twisted pair, coaxial, fiber optics)
 - Wireless (indoor/air, outdoor/air, underwater, space)
- Propagating signals experience a gradual degradation over distance
- Boosting improves signal and reduces noise, e.g. repeaters

Receiver and Information Sinks

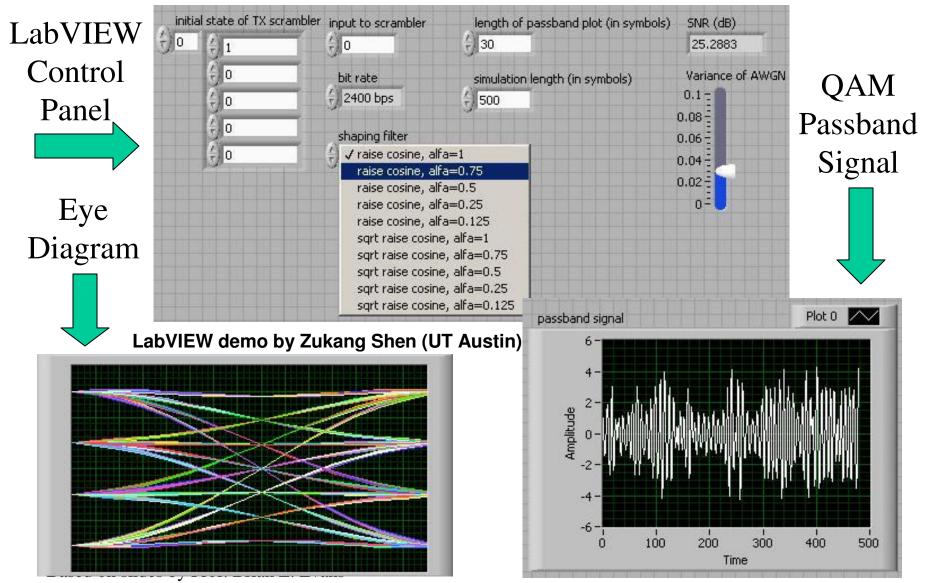
• Receiver

- Carrier circuits undo effects of carrier circuits in transmitter,
 e.g. demodulate from a bandpass signal to a baseband signal
- Signal processing subsystem extracts and enhances the baseband signal
- Information sinks

- Output devices, e.g. computer screens, speakers, TV screens

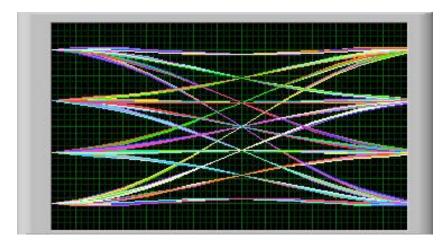

Single Carrier Transceiver Design

• Design/implement dial-up (voiceband) transceiver

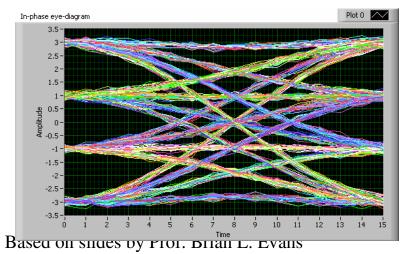

Design different algorithms for each subsystem Translate signal processing algorithms into real-time software Test implementations using test equipment and LabVIEW

Laboratory	Modem Subsystems			
1 introduction	block diagram of transmitter			
2 sinusoidal generation	sinusoidal mod/demodulation			
3(a) finite impulse response filter	pulse shaping, 90° phase shift			
3(b) infinite impulse response filter	transmit and receive filters,			
	carrier detection, clock recovery			
4 pseudo-noise generation	training sequences			
5 pulse amplitude mod/demodulation	training during modem startup			
6 quadrature amplitude mod (QAM)	data transmission			
7 QAM demodulation	data reception			
Based on slides by Prof. Brian L. Evans 0-				

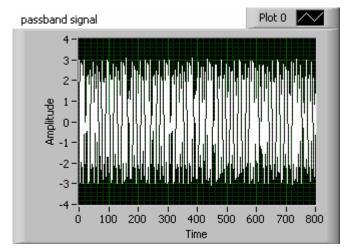
Lab 1: QAM Transmitter Demo

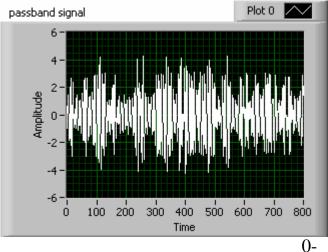


Lab 1: QAM Transmitter Demo



Lab 1: QAM Transmitter Demo


square root raise cosine, roll-off = 1, SNR = ∞


raise cosine, roll-off = 1, SNR = 30 dB

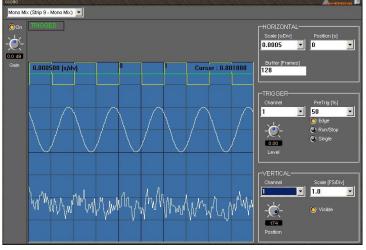
passband signal for 1200 bps mode

passband signal for 2400 bps mode

22

Lab 2: Sine Wave Generation

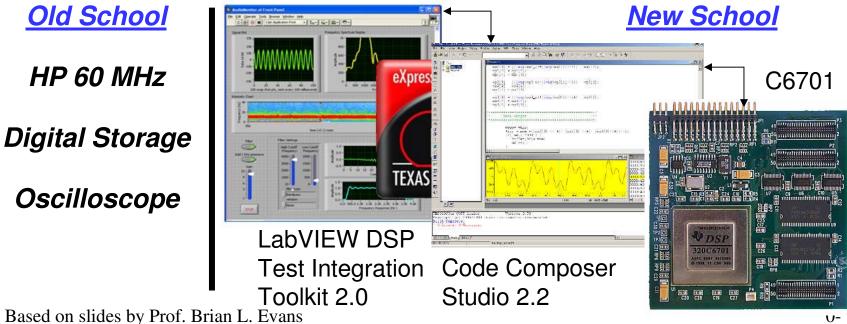
 There must be three ways to make your sine waves
 Function call
 Lookup table


Difference equation

• Three output methods

Polling data transmit registerSoftware interruptsDirect memory access (DMA) transfers

• Expected outcomes are to understand


Signal quality vs. implementation complexity tradeoff Interrupt mechanisms and DMA transfers

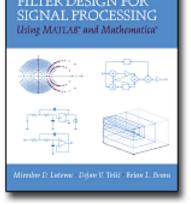
Lab 2: Sine Wave Generation

• Evaluation procedure

Validate sine wave frequency on scope, and test for various sampling rates (14 sampling rates on board)Method 1 with interrupt prioritiesMethod 1 with different DMA initialization(s)

Lab 3: Digital Filters

- Aim: Evaluate four ways to implement discrete-time linear time-invariant filters
 - FIR filter: convolution in C and assembly
 - IIR Filter: direct form and cascade of biquads, both in C
- IIR filter design gotchas: oscillation & instability
 - In classical designs, poles sensitive to perturbation
 - Quality factor measures sensitivity of pole pair: $Q \in [\frac{1}{2}, \infty)$ where $Q = \frac{1}{2}$ dampens and $Q = \infty$ oscillates
- Elliptic analog lowpass IIR filter $\delta_p = 0.21$ at $\omega_p = 20$ rad/s and $\delta_s = 0.31$ at $\omega_s = 30$ rad/s [Evans 1999]


cal	Q	poles	zeros	Q	poles	zeros	zed
assi	1.7	-5.3533±j16.9547	0.0±j20.2479	0.68	-11.4343±j10.5092	-3.4232±j28.6856	imi
cli	61.0	-0.1636±j19.9899	0.0±j28.0184	10.00	-1.0926±j21.8241	-1.2725±j35.5476	opt

Based on slides by Prof. Brian L. Evans

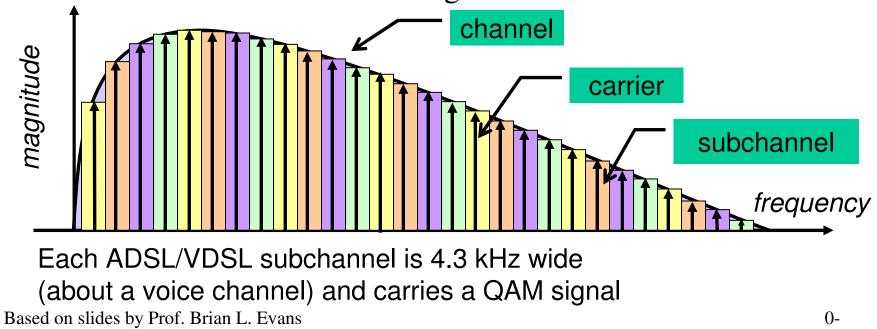
Lab 3: Digital Filters

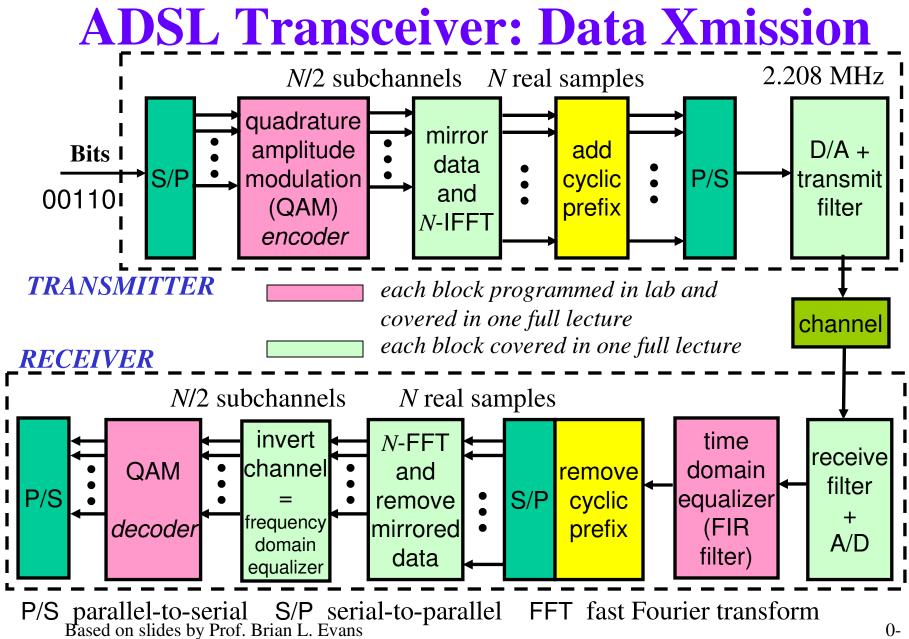
• IIR filter design for implementation

Butterworth/Chebyshev filters special cases of elliptic filters Minimum order not always most efficient

• Filter design gotcha: polynomial inflation

Polynomial deflation (rooting) reliable in floating-point Polynomial inflation (expansion) may degrade roots Keep native form computed by filter design algorithm

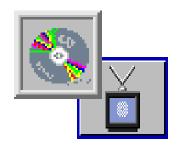

• Expected outcomes are to understand


Speedups from convolution assembly routine vs. C Quantization effects on filter stability (IIR) FIR vs. IIR: how to decide which one to use

Got Anything Faster Than Dial-Up?

• Multicarrier modulation divides broadband (wideband) channel into narrowband subchannels

Uses Fourier series computed by fast Fourier transform (FFT) Standardized for Digital Audio Broadcast (1995) Standardized for ADSL (1995) & VDSL (2003) wired modems Standardized for IEEE 802.11a/g wireless LAN & 802.16a



Conclusion

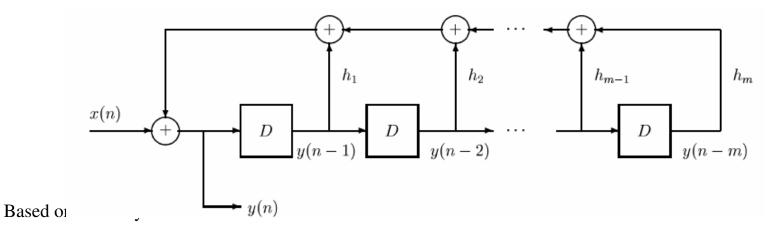
• Objectives

Build intuition for signal processing concepts Translate signal processing concepts into real-time digital communications software

• Deliverables and takeaways

Deliver voiceband transceiver Tradeoffs in signal quality vs. implementation complexity Test/validate implementation Extend hands-on experience to broadband modems

• Role of technology


TI DSPs and Code Composer Studio NI LabVIEW and DSP Test Integration Toolkit

Based on slides by Prof. Brian L. Evans

Lab 4: Data Scramblers

- Aim: Generate pseudo-random bit sequences
 Build data scrambler for given connection polynomial
 Descramble data via descrambler
 Obtain statistics of scrambled binary sequence
- Expected outcomes are to understand

Principles of pseudo-noise (PN) sequence generation Identify applications in communication systems

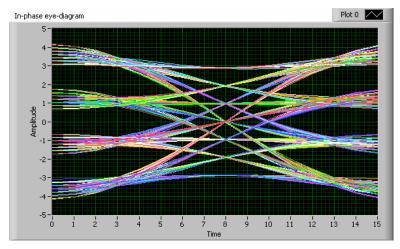
Lab 5: Digital PAM Transceiver

• Aim: Develop PAM transceiver blocks in C a_n Amplitude mapping to PAM levels 3 d Interpolation filter bank for pulse shaping filter d Clock recovery via phase locked loops -d a_n Transmit D/A $g_T[n]$ Filter -3 d L samples per symbol 4-PAM $g_{T,0}[n]$ Transmit $g_{T,1}[n]$ D/A Filter a_n **Filter bank implementation**

Lab 5: Digital PAM Transceiver

• Expected outcomes are to understand

Basics of PAM modulation

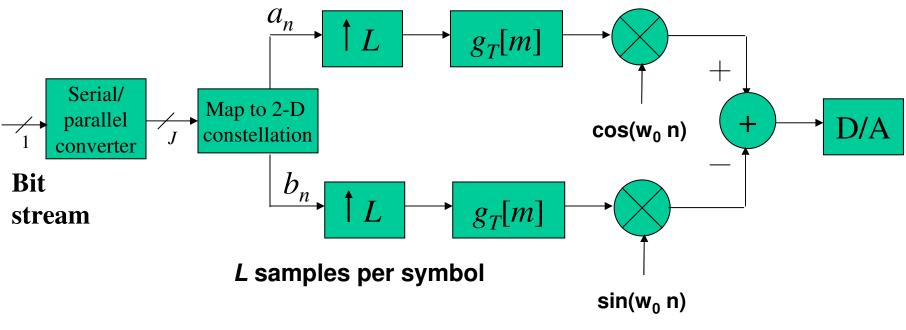

Zero inter-symbol interference condition

Clock synchronization issues

• Evaluation procedure

Generate eye diagram to visualize PAM signal quality Observe modulated spectrum

Prepare DSP modules to test symbol clock frequency recovery subsystem



4-PAM Eye Diagram

Lab 6: Digital QAM Transmitter

• Aim: Develop QAM transmitter blocks in C

Differential encoding of digital data Constellation mapping to QAM levels Interpolation filter bank for pulse shaping filter

Lab 7: Digital QAM Receiver

• Aim: Develop QAM receiver blocks in C

Carrier recovery Coherent demodulation Decoding of QAM levels to digital data

• Expected outcomes are to understand

Carrier detection and phase adjustment Design of receive filter Probability of error analysis to evaluate decoder

• Evaluation procedure

Recover and display carrier on scope Regenerate eye diagram and QAM constellation Observe signal spectra at each decoding stage

Based on slides by Prof. Brian L. Evans