Problem 4.1 PAM vs. QAM.
 For this problem, please make the following assumptions:

 • The noise is additive white Gaussian noise with variance σ^2 in both the in-phase and quadrature components.
 • 0’s and 1’s appear with equal probability.
 • The symbol period T is equal to 1.
 • The shortest distance between two constellation points is $2d$.

(a) Derive the symbol error probability formula for 16-QAM, also known as Quadrature Phase Shift Keying (QPSK).

(b) Calculate the average power of the 16-QAM signal.
(c) Write the probability of symbol error for 16-PAM and 16-QAM as functions of the signal-to-noise ratio (SNR). Superimposed on the same plot, plot the probability of symbol error for 16-PAM and 16-QAM as a function of SNR. For the horizontal axis, let the SNR take on values from 0 dB to 20 dB. Comment on the difference in the symbol error rate vs. SNR curves.

Problem 4.2 Carrier Phase Recovery via Phase Locked Loop

Problem 4.3 Carrier Phase Recovery via the Costas Loop
Johnson & Sethares, problem 10.17.

Problem 4.4 Timing Recovery Using Output Power Maximization
Johnson & Sethares, problem 12.9.

Problem 4.5 Linear Least-Squares Equalization
Johnson & Sethares, problem 13.1.