Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Faouzi Kossentini

Signal Processing and Multimedia Group Department of Electrical and Computer Engineering University of British Columbia

http://spmg.ece.ubc.ca/

Outline

- Introduction: Low bit rate video coding
- > The H.263/H.263+ standards and their optional modes
- Efficiency: Performance and complexity of individual modes and combinations of modes
- Efficiency: Real-time software-only encoding
- Efficiency: Rate-distortion optimized video coding
- Scalability: Description & Characteristics
- Scalability: Rate-distortion optimized framework
- Error resilience: Synchronization & error concealment
- Error resilience: Multiple description video coding
- Conclusions: H.263/H.263+, MPEG-4 and research directions

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Low Bit Rate Video coding

Why?: Increasing demand for video conferencing and telephony applications, limited bandwidth in PSTN and wireless networks

Video coding algorithms:

- **Waveform based coding: MC+DCT/wavelets, 3D subband, etc.**
- > Object- and model-based coding : shape coding, wireframes, etc.

Video coding standards:

- ITU-T H.261(1990), H.262 (1994), H.263 (1995), H.263+ (1998)
- ISO/IEC MPEG1 (1992), MPEG2 (1994), MPEG4 (1999)

H.263 version 2 (H.263+): Higher coding efficiency, more flexibility, scalability support, error resilience support

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

The H.263 Standard

Structure

> Inter picture prediction to reduce temporal redundancies

> DCT coding to reduce spatial redundancies in difference frames

Major enhancements to H.261

More standardized input picture formats

➤ Half pixel motion compensation

> Optimized VLC tables

Better motion vector prediction

Four (optional) negotiable modes

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

The H.263 Standard: Optional Modes

Unrestricted Motion Vector (UMV) mode, Annex D: Motion vectors (MVs) allowed to point outside the picture, MV range extended to ±31.5

Syntax-based Arithmetic Coding (SAC) mode, Annex E : SAC used instead of VLCs

Advanced Prediction (AP) mode, Annex F: Four MVs per macroblock, over-lapped motion compensation, MVs allowed to point outside the picture area

PB-frames (PB) mode, Annex G: A Frame with a P-picture and a Bpicture used as a unit

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

The H.263+ Standard: Optional Modes

Unrestricted Motion Vector (UMV) mode, Annex D: MV range extended to ±256 depending on the picture size, reversible VLCs used for MVs

Advanced Intra Coding (AIC) mode, Annex I: Inter block prediction from neighboring intra coded blocks, modified quantization, optimized VLCs

Deblocking Filter (DF) mode, Annex J: Deblocking filter inside the coding loop, four motion vectors per macroblock, MVs outside picture boundaries

Slice Structured (SS) mode, Annex K: Slices used instead of GOBs

Supplemental Enhancement Information (SEI) mode, Annex L: Supplemental information included in the stream to offer display capabilities

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

The H.263+ Standard: Optional Modes

Improved PB-frames (IBP) mode, Annex M: Forward, backward and bi-directional prediction supported, delta vector not transmitted

Reference Picture Selection (RPS) mode, Annex N: Reference picture selected for prediction to suppress temporal error propagation

Temporal, SNR, and Spatial Scalability mode, Annex O: Syntax to support temporal, SNR, and spatial scalability

Reference Picture Resampling (RPR) mode, Annex P: Warping of the reference picture prior to its use for prediction

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

The H.263+ Standard: Optional Modes

Reduced Resolution Update (RRU) mode, Annex Q: Encoder allowed to send update information for a picture encoded at a lower resolution, while still maintaining a higher resolution for the reference picture

Independently Segmented Decoding (ISD) mode, Annex R: Dependencies across the segment boundaries not allowed

Alternative Inter VLC (AIV) mode, Annex S: The intra VLC table designed for encoding quantized intra DCT coefficients in the AIC mode used for inter coding

Modified Quantization (MQ) mode, Annex T: Quantizer allowed to change at the macroblock layer, finer chrominance quantization employed, range of representable quantized DCT coefficients extended to [-127, +127]

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Advanced Intra Coding (AIC) mode, Annex I: Inter block prediction from neighboring intra coded blocks, modified quantization, optimized VLCs

Performance & Complexity: Compression efficiency for intra macroblocks increased, encoding time increased by ~5%, required memory slightly increased

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Deblocking Filter (DF) mode, Annex J: Deblocking filter inside the coding loop, four motion vectors per macroblock, MVs outside picture boundaries

Performance: Subjective quality improved (blocking & mosquito artifacts removed), 5-10% additional encoding time

(a) (b) Without (a) and with (b) DF mode set on

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Improved PB-frames (IBP) mode, Annex M: Forward, backward and bi-directional prediction supported, delta vector not transmitted

Performance: Picture rate doubled, complexity increased, more memory required, one frame delay incurred

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Alternative Inter VLC (AIV) mode, Annex S: The intra VLC table designed for encoding quantized intra DCT coefficients in the AIC mode used for inter coding

Performance: Useful at high bit rates, bit savings of as much as 10% achieved, less than 2% additional encoding/decoding time required

Sequence	Quantizer Step Size	Bit savings using AIV mode
AKIYO	4	5%
	12	0%
FOREMAN	4	7%
	8	4%
	16	1%

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Modified Quantization (MQ) mode, Annex T: Quantizer allowed to change at the macroblock layer, finer chrominance quantization employed, range of representable quantized DCT coefficients extended to [-127, +127]

Performance: Chrominance PSNR increased substantially at low bit rates, more flexible rate control supported, very little complexity and computation time added to the coder

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Efficiency: Performance & Complexity of Combinations of Modes

H.263+ modes: AIC, MQ, UMV, DF, AP

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Required for real-time video telephony and conferencing: encoding at a minimum of 8-10 fps for QCIF resolution

	FOREMAN (fps)	AKIYO (fps)
H.263+ Baseline coding (Full ME)	1.8	2.4
H.263+ Baseline coding (Fast ME)	4.3	5.8
H.263+: MQ, DF, AIC, AIV, IPB, UMV, AP modes turned on (Fast ME)	3	3.8

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

- Algorithmic approach: Developing efficient platformindependent video coding algorithms
- Hardware dependent approach: Mapping SIMD oriented coding components onto Intel's MMX architecture

Function	Computational Load
Reference IDCT	25%
Integer Pixel ME	12%
Fast DCT	11%
Half Pixel ME	10%
Quantization	9%

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Efficient Video Coding Algorithms:

>IDCT for blocks with all or most of the coefficients equal to zero avoided or efficiently computed (respectively)

>SAD for most macroblocks computed efficiently via prediction

>DCT & Quantization for most blocks avoided via prediction

Linear approximation methods used for half-pixel ME
 Quantization: look-up tables employed

Some Image and Video Processing Research Projects @ the UBC Signal Processing and Multimedia Laboratory

Intel's MMX Architecture:

- **>**Features :
- SIMD structure
- ≻ Four new data types
- ≻ 57 new instructions
- ➤ Saturation arithmetic

acke	d wor 48	a (Foi 47	ar 16-bi 32 31	t elen	nents) 16	15		
Packe	d dou	blewo	rd (Two 323	32- b	it ele	mei	nts)	
Packe	d dou	blewo	rd (Two 323	32- b	it ele	mer	nts)	
Packe	d dou	blewo	rd (Two 32 3	32-b	it ele	mei	nts)	

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

MMX Mapping of SAD Computations:

SAD computation function implemented in MMX for 16x16 blocks (baseline coding) and 8x8 blocks (optional modes)

Saturation arithmetic is used to perform absolute difference operations

>Result: 4-5 times faster SAD computations

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

DCT MMX Implementation:

>Floating point arithmetic to fixed point arithmetic

≻Four rows processed at a time

➢ Results: 4 times faster using fixed point arithmetic, 3 times faster using MMX as compared to the integer "C" implementation

	Foreman	Akiyo	Foreman	Akiyo
	48 Kb/sec	8 Kb/sec	64 Kb/sec	28 Kb/sec
PSNR with floating point DCT	30.47	32.63	31.56	37.92
Variation in PSNR with	-0.01	+0.02	-0.01	0.00
integer or MMX DCT				

Other MMX Implementations: Interleaved transfers for half pixel

ME (7x), interp. (3x), motion comp. (2x), block data transfers (2x)

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Overall Performance:

 > 14-17 fps baseline H.263+ encoding with fast ME
 > 8-10 fps with all of the H.263+ optional modes
 > More than a 100% increase in speed using the efficient algorithms and more than a

25% additional increase in speed using MMX

Function	Computational Load			
DCT	9%			
IDCT	9%			
Quantization	8%			
Load ME Area	7%			
Scan	6%			
Interpolation	5.5%			
Fast ME	5%			
Reconstruct Full Image	5%			
Half Pixel ME	4%			
Motion Compensation	4%			

	encoded fram before optim	ne rate ization	encoded frame rate after optimization		
	FOREMAN	AKIYO	FOREMAN	AKIYO	
H.263+ Baseline coding (Full ME)	2.0	2.4	4.1	4.4	
H.263+ Baseline coding (Fast ME)	6.4	7.5	14.3	17.0	

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Efficiency: Rate-Distortion Optimized Video Coding

Motivation:

Best possible tradeoffs between quality (distortion) and bit rate obtained via Rate-Distortion (RD) optimization, through the use of the Lagrangian cost measure

Solution:

- > Motion vector selected that yields the best rate-quality tradeoff
- Coding mode (Intra, Inter16, Inter8, Skipped) selected that yields the best rate-quality tradeoff based on the already determined motion vectors

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Efficiency: Rate-Distortion Optimized Video Coding

Result:

> 10 - 30% savings in bit rate obtained using the RD optimized coder for most sequences over our reference software

> Comparison of RD Performance RD Optimized Coder vs TMN-3.1.2

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Scalability: Description & Characteristics

Description:

- > Multi-representation coding at different quality and resolution levels allowed
- Three general types (SNR, spatial, temporal) of scalability supported
- **Characteristics:**
- Each layer built incrementally on its previous layer, increasing the decoded picture quality, resolution, or both
- > Only the first (base) layer independently decoded
- Information from temporally previous pictures in the same layer or temporally simultaneous pictures in a lower layer used

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Scalability: Description & Characteristics

Example:

> Enhancement layer 1: Example of SNR scalability

> Enhancement layer 2: Example of spatial and temporal scalability

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Scalability: RD Optimized Framework

Motivation:

- Compression efficiency of a higher layer dependent on that of all preceding (lower) layers
- > Higher compression efficiency and more flexible joint rate-distortion control achieved via an RD optimized framework
- **Current research direction:**
- Employ (1) multiple rate constraints (explicit for each layer) OR (2) a single rate constraint with explicit distortion constraints for each layer.
- > Apply RD optimization to temporal, spatial and SNR scalable coding algorithms

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Error Resilience: Synchronization & Error Concealment

Use of Synchronization Markers:

>Different synchronization markers (between GOBs, slices, etc.) used for higher error resilience

Error concealment:

>Missing motion vectors for a macroblock received in error recovered from neighboring macroblocks (via spatial methods)

>Texture information from the previous frame is compensated using the recovered motion vectors

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Error Resilience: Synchronization & Error Concealment

Experimental Results:

Packetization: one packet consists of a complete GOB.
Using synchronization markers and error concealment yields PSNR gains of as much as 9 dB.

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Error Resilience: Multiple Description Video Coding

Use of Reference Picture Selection Mode: Use of different pictures (or picture segments) for prediction allowed by H.263+, hence multiple description video coding

Multiple Description:

>Different descriptions of the source sent on different channels, may be available at the decoder

>Redundancy among descriptions minimized

>Useful even if only one description is available

Temporal Reference for Prediction:

>Different temporal reference pictures employed for

prediction of different pictures

>Error propagation confined to those pictures dependent on the missing reference

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience

Conclusions

H.263+ versus H.263:

- ► H.263+ backward compatible with the H.263 (same baseline)
- Efficient ways provided by H.263+ of trading additional complexity for more compression efficiency, scalability, resilience and flexibility
 H.263/H.263+ versus MPEG-4:
- > H.263 output decodable by MPEG-4, H.263+/MPEG-4 sharing tools
- Although somewhat available via chroma keying in H.263+, objectbased functionality better provided by MPEG-4
- >H.263/H.263+ public-domain implementation: http://spmg.ece.ubc.ca/
 Future directions:
- > Still higher coding efficiency and better scalability/resilience possible
- > More object-based tools and capabilities, better (efficient) shape coding

Low Bit Rate H.263 + Video Coding: Efficiency, Scalability and Error Resilience