Coloring Optical Packets: How many crayons do we really need?

Phil Whiting Carl Nuzman
Lucent Bell Labs

with

Vincenzo Eramo Marco Listanti
University of Rome

Outline

- The application
- The analysis
- The results
- The conclusions

Bufferless Optical Wavelength-Division Multiplexed Packet Switch (fixed wavelength packets)

fiber 1
fiber n

$F n \times n$ switches
Good: switch simplicity
Bad: blocking!

Blocking analysis

- Traffic assumptions
- Packet present at input w.p. $0<a<1$
- Uniform 1/n output routing
$\mathrm{M}=\#$ packets desiring given port $\quad \operatorname{Bin}(a / n, n) \sim \operatorname{Pois}(a)$

$$
L_{1}=P\{\operatorname{loss}\}=\frac{E\left[(M-1)_{+}\right]}{a} \approx 1-\frac{1}{a}+\frac{e^{-a}}{a} \approx \frac{a}{2}
$$

so if packet arrives in $1 / 5$ slots, $1 / 10$ packets lost!

Bufferless Optical Wavelength-Division Multiplexed Packet Switch (full wavelength conversion)

fiber 1
fiber n

one $n F \mathrm{x} n F$ switch
$n F$ fixed-output all-input wavelength converters

Full conversion

- Good: Blocking falls exponentially in F
$\mathrm{M}=\#$ packets desiring given fiber $\quad \operatorname{Bin}(a / n, n F) \sim \operatorname{Pois}(a F)$

$$
L_{F}=P\{\operatorname{loss}\}=\frac{E\left[(M-F)_{+}\right]}{a F} \quad \text { falls off as } \frac{e^{-F}}{F}
$$

so if $a=1 / 5, \quad F=20, \quad 1$ out of 10 billion packets lost!

- Bad: Complex switch
- Bad: Wavelength converters can be expensive !\$

Bufferless Optical Wavelength-Division Multiplexed Packet Switch (shared wavelength conversion)

$F n \times n$ switches one $n F \mathrm{x} w$ switch one $w \times n F$ switch w tunable wavelength converters

Packet loss (shared conversion)

- More than F packets want a given output fiber

$$
L_{F}
$$

- Not enough wavelength converters available

$$
L_{w}^{\mathrm{c}}=\frac{E\left[(W-w)_{+}\right]}{a n F}=\frac{1}{a n F} \sum_{k=w+1}^{n F} P[W \geq k]
$$

- Total loss

$$
P[\operatorname{loss}]=L_{F}+L_{w}^{\mathrm{c}}
$$

Occupancy problem: $\mathrm{P}[W \geq w]$

- Exact combinatorial expression
- good for small n, F, unwieldy for large n, F
- Simulation
- good for small n, F, high blocking
- Large deviations approach
- good for large n, F, low blocking
- gives insight into how blocking occurs

Overall strategy

- Focus first on single wavelength
- Condition on number of packets present, r

$$
\begin{aligned}
P[W \geq w] & =\sum_{r=1}^{F} P[W \geq w \mid R=r] P[R=r] \\
& =\sum_{r=1}^{F} e^{-n Q(w / n, r / n)} e^{-n l(r / n)}
\end{aligned}
$$

- As n increases, largest term dominates

$$
P[W \geq w] \approx \exp (-n[Q(w / n, \bar{\beta})+l(\bar{\beta})])
$$

where $\bar{\beta}$ minimizes $Q(w / n, \beta)+l(\beta)$

Exponent for number of packets, R

- R is $\operatorname{Bin}(a, n)$, the sum of n Bernoulli r.v.'s with success probability a.
- Classic large deviations problem when $r>n a$.

$$
\begin{gathered}
P[R=r] \approx e^{-n l(r / n)} \\
l(\beta)=\beta \log \frac{\beta}{a}+(1-\beta) \log \frac{(1-\beta)}{(1-a)}
\end{gathered}
$$

Exponent for W given R

- $R=$ number of packets present
- $U=$ number of occupied urns
- $W=R-U=$ number of redundant packets

$$
P[W \geq w \mid R=r]=P[U \leq r-w \mid R=r]=P[R \geq r \mid U=r-w]
$$

Exponent for R given U

How many balls needed to fill $n \alpha$ out of n urns?

$$
R_{n}=\sum_{j=1}^{n \alpha} B_{j}^{n}
$$

where $B^{n}{ }_{j}=$ number of balls used to fill j-th urn.
These are independent geometric r.v.'s with success rate $(n-j+1) / n$.

$$
\begin{gathered}
P[R \geq n \beta] \approx e^{-n J(\beta, \alpha)} \\
J(\beta, \alpha)=(\beta-\alpha) \log \rho+(1-\alpha) \log (1-\alpha)+\beta(1-\rho \alpha) \\
\text { where } \rho \text { solves } \beta \rho=-\log (1-\alpha \rho)
\end{gathered}
$$

In previous notation, $\mathrm{Q}(\alpha, \beta)=\mathrm{J}(\beta, \beta-\alpha)$.

Extensions

- Fixed-color wavelength converters
- Asynchronous operation
- Switches with buffers
- Asymetric traffic patterns

Conclusions

- We will all be happier if we learn to share our crayons.

