Wavelength Converters for a Packet Switch

Carl Nuzmann, Phil Whiting

Mathematics Research Center, Bell Laboratories

Large Devations for Classical Occupancy

- $\beta=r / n$ balls per urn thrown
- ξ fraction of urns to be occupied
- B_{j}^{n} number of balls needed to occupy the j th urn
- $R_{n} \equiv \sum_{j=1}^{b_{n}} B_{j}^{n}$ total balls needed

$$
\begin{aligned}
J(\xi, \beta) & \equiv \sup _{t} t \beta-\varphi(t) \\
& =(\beta-\xi) \log \rho+(1-\xi) \log (1-\xi)-\frac{(1-\rho \xi)}{\rho} \log (1-\rho \xi)
\end{aligned}
$$

where ρ satisfies

$$
\beta \rho=-\log (1-\rho \xi) .
$$

Consider, $n=100$ and $n-m=40$ urns with $r=90$ balls.

$$
\begin{aligned}
\beta & =90 / 100=0.9 \\
\xi & =0.4
\end{aligned}
$$

Solving the fixed point

$$
\begin{aligned}
\rho & \approx 2.134 \\
\text { Exact } & \approx 1.48 \times 10^{-10} \\
\text { Prob. } & \approx 1.34 \times 10^{-9}
\end{aligned}
$$

Poisson approximation, $\lambda=n e^{-\beta} \approx 40.66$

$$
\text { Poisson }=\sum_{j>m} e^{-\lambda} \frac{\lambda^{j}}{j!} \approx 0.0017
$$

Switch Asymptotics I

Analysis of Loss due to Fibre Overflow

Packet Loss due to Overflow $=L^{(n F)}(a)$

$$
\begin{align*}
L^{(n F)}(a) & =\frac{1}{n a F} \sum_{j=1}^{n} \mathbb{E}\left[\left[N_{j}-F\right]_{+}\right] \tag{1}\\
& =(a F)^{-1} \mathbb{E}\left[\left[N_{1}-F\right]_{+}\right] \\
& =(a F)^{-1} \sum_{k=F+1}^{n F}\binom{n F}{k}(k-F)\left(\frac{a}{n}\right)^{k}\left(1-\frac{a}{n}\right)^{n F-k} \\
& \approx(a F)^{-1} \sum_{k=F+1}^{\infty} \frac{(a F)^{k}}{k!} e^{-a F}(k-F) \tag{2}
\end{align*}
$$

if we assume equal traffic to each output fibre and then use the well known Poisson approximation to the binomial for large n.

Switch Asymptotics II

Probability of Insufficient Converters

Throwing $n \beta$ balls and occupying $n(\beta-\alpha)$ urns corresponds to $n \alpha$ converters being needed. Hence,

$$
\mathbb{P}\{W \geq w \mid R=r\} \approx e^{-n(J(\beta-\alpha, \beta)}
$$

Actually the number of packet arrivals (balls thrown) are random with (say) a binomial distribution. From the theorem of total probability we then have that,

$$
\begin{equation*}
\mathbb{P}\{W \geq w\}=\sum_{r} \mathbb{P}\{W \geq w \mid R=r\} \mathbb{P}\{R=r\} \tag{3}
\end{equation*}
$$

and since all the entries in the sum are exponentially small

$$
\begin{align*}
\mathbb{P}\{W \geq w\} & \approx \max _{r} \mathbb{P}\{W \geq w \mid R=r\} \mathbb{P}\{R=r\} \tag{4}\\
& \approx e^{-n\left[\inf _{\alpha<\beta}(J(\beta-\alpha, \beta)+l(\beta, a))\right]}
\end{align*}
$$

where the infimum in the exponent is over β with α fixed. $l(\beta, a)$ is the rate function for the binomial,

$$
l(\beta, a) \equiv \beta \log \frac{\beta}{a}+(1-\beta) \log \frac{(1-\beta)}{(1-a)} .
$$

Thus the large deviations exponent for random packet arrivals and a single wavelength is seen to be,

$$
\begin{equation*}
\mathcal{E}(\alpha) \equiv \inf _{\beta \geq \alpha} J(\beta-\alpha, \beta)+l(\beta, a) \tag{5}
\end{equation*}
$$

Switch Asymptotics III

Overall Packet Loss

- $\beta=r / n$ packets per output per frequency
- α_{w} converters per output per frequency available

$$
\begin{aligned}
(n a F)^{-1} \mathbb{E}\left[N_{w}\right] & =(n a F)^{-1} \sum_{k=w+1}^{n F} \mathbb{P}\{W \geq k\} \\
& =(a n F)^{-1} \sum_{k=w+1}^{n F} \mathbb{P}\left\{\frac{W}{n F} \geq \frac{k}{n F}\right\} \\
& \approx(a n F)^{-1} \sum_{k=w+1}^{n F} e^{-n F \mathcal{E}\left(\frac{k}{n F}\right)} \\
& \approx a^{-1} \int_{\alpha=\alpha_{w}}^{1} e^{-n F \mathcal{E}(\alpha)} d \alpha \\
& \leq a^{-1} \int_{\alpha_{w}}^{\infty} e^{-n F\left(\mathcal{E}\left(\alpha_{w}\right)+\left(\alpha-\alpha_{w}\right) \mathcal{E}^{\prime}\left(\alpha_{w}\right)\right)} d \alpha \\
& =\frac{e^{-n F \mathcal{E}\left(\alpha_{w}\right)}}{n a F \mathcal{E}^{\prime}\left(\alpha_{w}\right)}
\end{aligned}
$$

where we have used the fact that $\mathcal{E}(\alpha)$ is increasing and convex to lower bound the exponent by the tangent at α_{w}. We thus have

$$
\mathbb{P}\{\text { Packet Lost }\} \leq L^{(n F)}(a)+\frac{e^{-n F \mathcal{E}\left(\alpha_{w}\right)}}{n a F \mathcal{E}^{\prime}\left(\alpha_{w}\right)}
$$

Results I

Illustrating Exponent Trade-Off

