
Random matrices and their applications

to Multi-Input Multi Output

Communication Systems
Anna Scaglione

School of Electrical & Computer Engineering

Cornell University

March 6, 2002



2002 Telecomm. Seminar 1

Why should we be interested in this problem

• Percentage of papers appeared in 2001 that have at least one

matrix defined: 89% IT, 65% Com., 99.999999% SP

• We all use Matlab, we all own our personal copy of “Matrix

Computations” [Golub, Van Loan]. Tons of matrices are

decomposed everyday by ECE students

• Random Matrices are practical, useful and have beautiful

properties

• Random Matrices are good for you: they make you realize that

your knowledge of Calculus is at the level of a Mickey Mouse

Cartoon
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Random Matrices in Communication Systems

• Multiple sources, Multiple Sensors

• System with transmit and receive diversity

I Random Fading

I Random Space-Time Codes

• Symbol Synchronous CDMA system

• Data Vectors with Random Covariance
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MIMO Systems
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x(t) = (x1(t), . . . , xn(t))T

• Multiple Access, Array Processing: x(t) from different sources

• Transmit Diversity: x(t) =
∑+∞

n=−∞ x[n]gT (t− nT ) n× 1

• Space-time code c = (x[n1], . . . , x[nl]) n× l
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MIMO Channel Output Model

y(t) = (y1(t), . . . , yn(t))T

y[k] := y(kT ) signals samples, T ≈ 1/W , W= Bandwidth

• Narrowband Channel (Flat fading):

y[k] = H [k]x[k] + n[k] m× 1

• Broadband Channel (Frequency selective):

y[k] =
∞∑

n=−∞
H [k − n]x[n] + n[k]. m× 1

H [k] is m× n
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Symbol Synchronous CDMA system

• Multiple sources, One sensor, Multiple samples

y(t) =
K∑

k=1

Akbksk(t) + n(t)

the vector {y}1,p , y(pTc),

y = SAb + n

{b}1,k , bk, Users symbols

A , diag(A1, . . . , AK), Users amplitudes

{S}k,p , sk(pTc), Users signatures sampled at the chip rate

Tc ≈ 1/W

• This model was used in [Hanly,Tse’99] to compare the

performances of Linear Multiuser Detectors
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Vectors with Random Covariances

• Sensor network

x1

x2
3x

xi

• The covariance matrix of x[k] = (x1[k], . . . , xn[k]) depends on the

relative distances between nodes di,j which is random.

• We can study the rate distortion function of the data as a whole

Anna Scaglione



2002 Telecomm. Seminar 7

Relevant Performance Measures

MIMO channel ⇒ H random, CDMA ⇒ S random

• MIMO channel Capacity and CDMA aggregate Capacity:

C = log |σ2I + HHH | C = log |σ2I + SAAHSH |
• MIMO channel MMSE for LMMSE receiver

MMSE = Tr((I + HHHσ−2)−1)

• LMMSE User SIR

SIRi = sH
i (SAAHSH + σ2I)−1si

• Decorrelating receiver User SIR

SIRi = {σ2(SAAHSH)−1}−1
i,i

• Differential Entropy of Gaussian sensor data

H(X) =
1

2
log(2πe)n|Rxx|
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• Field initiated by the pioneering work by Eugene Paul Wigner

• He searched for the asymptotic empirical density of the ordered

random eigenvalues of an n× n symmetric X(ω):

µω(x) =
1

n

n∑
i=1

δ(x− λii(X(ω)))

• Now we can run this 3 line worth Matlab experiment

>> n=600; B=randn(n); A=(B+B’)/(2*sqrt(2*n)); hist(eig(A),60)

and see what Wigner derived with pencil and paper (semicircle law)
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Asymptotic distribution we care about

Theorem [Machenko-Pastur ’67]

Let X = 1
n
BHB and B m× n and such that α = m/n:

(a) The elements of Bn are i.i.d. random variables ∈ C with

E{[B]i,j} = 0, V ar{[B]i,j} = 1 and E{|[B]i,j|4} < ∞.

µω(x) converges weakly as n →∞ to the Machenko-Pastur

distribution

µα(x) = max(1− α, 0)δ(x) +

√
(x− a)(b− x)

2πx
1[a,b](x)

where 1[a,b](x) = 1 for a ≤ x ≤ b and is zero elsewhere, δ(x) is a

Dirac delta and:

a := (
√

α− 1)2 , b := (
√

α + 1)2

• More general asymptotic results are available (used for CDMA

systems).
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MIMO channel- Some Asymptotic results

γ :=
P0σ2

H

σ2
n

The closed form expression for the normalized Capacity is

C(γ)=
1

log(2)

(
log(γ w) +

1− α

α
log

(
1

1− v

)
− v

α

)

where:

w =
1

2

(
1 + α + γ−1 +

√
(1 + α + γ−1)2 − 4α

)

v =
1

2

(
1 + α + γ−1 −

√
(1 + α + γ−1)2 − 4α

)
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Asymptotic results

The expressions of MSE and Pe are:

MSE(γ) =
1

2 αγ

(
−
√

a b γ +
√

1 + a γ
√

1 + b γ − 1
)

Pe(γ) ≤ exp (−(1 + α)γ)

(
1

2
√

α
I1(2

√
αγ)

1 + α

4α
I0(2

√
αγ)

)
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Derivation of the Statistics

• Asymptotic results are ready to use (Examples later)

• Derivation of the Statistics for the finite case

Matrix decompositions are Transformations of Random Variables!

I First step: deriving the Jacobian of the change of variables

from the original matrix to its factors

I Verify the uniqueness: true in the case of EVD (almost true),

QR or LU (lower-upper) decompositions and Cholesky

decomposition

• One way of doing it: Exterior differential Calculus
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Exterior Differential Calculus

• Seminal work of Élie Cartan

• Based on the concept of exterior product , ∧, introduced by

Hermann Günter Grassmann in 1844

Axioms of Grassman Exterior Algebra:

I α ∧ α = 0

I α ∧ β = − β ∧ α

I (aα) ∧ β = a(α ∧ β).

The axioms are sufficient to establish that:

(Aα) ∧ β = |A|(α ∧ β).

Amenity: Grassman at the age of 53 grew frustrated with the lack of interest in his

mathematical work and turned to Sanskrit studies, writing a widely used dictionary.
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What kind of product is dxdy? Is dx ∧ dy

dx

dy

dx   dy^

• The product of differentials dxdy behaves like dx ∧ dy and we can

use on it the axioms of Grassman Exterior Algebra

• To complete the description of Cartan’s differential forms:

Axiomatic definition of the d operator

I d(r-form) = (r + 1)-form

I d(dx) = 0 (Poincarè Lemma)

• These rules are systematic and the results are simpler to grasp

than the theory of manifolds
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The Jacobian recipe

F dA matrix of differentials

F (dA) the exterior product of the independent entries in dA:

I for an arbitrary A, (dA) = ∧i ∧j daij

I if A is diagonal (dA) = ∧idaii

I if A = AT or A is lower triangular (dA) = ∧1≤i≤j≤ndaij

I for Q unitary . . . (not nice)

• Select the arbitrary unique matrix factorization, for Ex. X = AB

• Apply the d operator → dX = dAB + AdB

• Evaluate (dAB + AdB), ∧ product of all the independent

differentials

Warning: This last task requires the description of the group of

matrices by mean of their independent parameters
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The Stiefel Manifold

• A unitary Q is described by n2 smooth functions that can be

integrated over nice enough intervals (Stiefel Manifold)

• Clearly, the independent parameters of the Stiefel Manifold are not

the real and imaginary parts of the elements of Q

• n out of the n2 parameters are redundant (in the sense that the

decomposition is unique up to n parameters), hence we can

assume:

(a) The diagonal elements of Q are real

• QQH = I → QdQH = −dQQH

• Under (a) the diagonal elements of QdQH are zero and QdQH is

antisymmetric

(dQ) ≡ (QHdQ) = ∧i>jq
H
i dqj
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2002 Telecomm. Seminar 17

The Stiefel Manifold
factors of

• The uniform p.d.f. in the Stiefel group of orthogonal or unitary

matrices is called Haar distribution

The volume of (QHdQ) integrated over QHQ = I, for Q unitary,

when the diagonal elements of Qm,n are constrained to be real:

V ol(Qm,n) ,
∫

QHQ=I

(QHdQ) =
(π)(m−1)n−n(n−1)/2

∏n−1
i=0 Γ(m− i)
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The statistics of A = BHB

• A = BHB with pA(A) and pB(B) the pdfs of the random matrices A and B

• Trick: Use QR and Cholesky decompositions first

B = QR , A = RHR.

with (dR) = ∧i<j(drij)

(dA) = 2n
n∏

i=1

(|rii|2)n+1−i(dR) =⇒ pA(A)(dA) = pA(RHR)
n∏

i=1

2n
(|rii|2

)n+1−i
(dR)

(dB) =
n∏

i=1

(|rii|2)m+1−i(dR)(dQ) =⇒ pB(B)(dB) = pB(QR)
n∏

i=1

(|rii|2
)m+1−i

(dR)(dQ)

where (dQ) = (QHdQ) is the element of volume of the Stiefel manifold
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Generalized Wishart Density

pA(A) = 2−n|A|m−n

∫
pB(Q

√
A)(QHdQ)

• When the p.d.f. pB(B) = pB(BHB) then:

I Q and R in the QR decomposition B = QR, are independent

I The p.d.f. of Q has Haar distribution

I The p.d.f. of A is:

pA(A) = 2−n|A|m−npB(A)V ol(Qm,n)
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The statistics of the EVD A = BHB

(dA) = (dUΛUH + UdΛUH + UHΛdU )

(dA) ≡ (UHdAU ) = (UHdUΛ−ΛUHdU + dΛ)

=
n∏

1≤i<k≤n

(λk − λi)
2(dΛ)(UHdU ).

In the general case of A = BHB:

pΛ(Λ) = 2−n

n∏

1≤i<k≤n

(λk − λi)
2Ψ(λ1, . . . , λn)

Ψ(λ1, . . . , λn) ,
∫

pA(UΛUH)(dU ).

{B}i,j ∼ N (0, σ2) =⇒ Ψ(λ1, . . . , λn) = (
∏n

i=1 λi)
m−n

e−
P

i λi
σ2
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MIMO frequency selective channel

Let’s use all this machinery!

a1. The noise is AWGN with variance σ2
n = 1

a2. {H[l]}∗r,t are spatially uncorrelated circularly symmetric N (0, 1)

(Rayleigh fading) with RH [l1, l2, r1, r2, t1, t2] , E{{H[l1]}∗r1,t1

{H[l2]}r2,t2} = δ(t1 − t2) δ(r1 − r2)RH(l2, l1)

a3. n , min(NT , NR) , m , max(NT , NR)

C = log |I + γH̃
H

H̃|

H̃ , diag(H̃[d]) , d , (0, . . . , L),

H̃[k] is the MIMO transfer function at the kth frequency bin:

H̃[k] =
∑L

l=0 H[l]e−j2π kl
K
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Average Capacity

frequency

transmit
antennas

receive
antennas

channel response:
one matrix (array manifold)
per frequency bin

H[0]

H[N-1]

E{C} =
K−1∑

k=0

NT∑

l=1

E {log(1 + γλl[k])}

Under a1, a2, the average Capacity for any (n,m) is:

E{C} =
K−1∑

k=0

∫ ∞

0

log
(
1 + γσ2

H [k]x
)
µm−n

n (x)dx

with α = m− n (Lα
k (x) the Laguerre polynomials):

µα
n(x) =

1
n

n−1∑

k=0

φα
k (x)2 φα

k (x) ,
[

k!
Γ(k + α + 1)

xαe−x

]1/2

Lα
k (x)
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Characteristic function of C

ΦC(s) = E{esC} = E

{
K−1∏

k=0

|I + γH̃[k]HH̃[k]|s
}

a3. The number of frequency bins K = Q(L + 1).

Choosing p = (0, Q, . . . , QL), since e−j 2π
Q(L+1)

lQd = e−j 2π
(L+1)

ld, W L+1 is

unitary

a4. RH(l1, l2) = RH(l2 − l1)

ΦC(s) ≈ γQsn

(
L∏

l=0

(σ2[lQ])Qs+m−n(n+1)
2 χ1(l)

)
n∏

i=1

(Γ(i)Γ(m− n + Qs + i))L+1,

I Outage Capacity through Chernoff bound
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Numerical versus Theory plots
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Conclusion

I The study of Random Matrices has produced several beautiful

results that have immediate application in Communication systems

analysis
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