Random matrices and their applications to Multi-Input Multi Output

Communication Systems

Anna Scaglione

School of Electrical \& Computer Engineering Cornell University

March 6, 2002

Why should we be interested in this problem

- Percentage of papers appeared in 2001 that have at least one matrix defined: 89% IT, 65% Com., 99.999999% SP
- We all use Matlab, we all own our personal copy of "Matrix Computations" [Golub, Van Loan]. Tons of matrices are decomposed everyday by ECE students
- Random Matrices are practical, useful and have beautiful properties
- Random Matrices are good for you: they make you realize that your knowledge of Calculus is at the level of a Mickey Mouse Cartoon

Random Matrices in Communication Systems

- Multiple sources, Multiple Sensors
- System with transmit and receive diversity
- Random Fading
- Random Space-Time Codes
- Symbol Synchronous CDMA system
- Data Vectors with Random Covariance

MIMO Systems

- Multiple Access, Array Processing: $\boldsymbol{x}(t)$ from different sources
- Transmit Diversity: $\boldsymbol{x}(t)=\sum_{n=-\infty}^{+\infty} \boldsymbol{x}[n] g_{T}(t-n T) \quad n \times 1$
- Space-time code $\boldsymbol{c}=\left(\boldsymbol{x}\left[n_{1}\right], \ldots, \boldsymbol{x}\left[n_{l}\right]\right) \quad n \times l$

MIMO Channel Output Model

$$
\boldsymbol{y}(t)=\left(y_{1}(t), \ldots, y_{n}(t)\right)^{T}
$$

$\boldsymbol{y}[k]:=\boldsymbol{y}(k T)$ signals samples, $T \approx 1 / W, W=$ Bandwidth

- Narrowband Channel (Flat fading):

$$
\boldsymbol{y}[k]=\boldsymbol{H}[k] \boldsymbol{x}[k]+\boldsymbol{n}[k] \quad m \times 1
$$

- Broadband Channel (Frequency selective):

$$
\boldsymbol{y}[k]=\sum_{n=-\infty}^{\infty} \boldsymbol{H}[k-n] \boldsymbol{x}[n]+\boldsymbol{n}[k] . \quad m \times 1
$$

$\boldsymbol{H}[k]$ is $m \times n$

Symbol Synchronous CDMA system

- Multiple sources, One sensor, Multiple samples

$$
y(t)=\sum_{k=1}^{K} A_{k} b_{k} s_{k}(t)+n(t)
$$

the vector $\{\boldsymbol{y}\}_{1, p} \triangleq y\left(p T_{c}\right)$,

$$
y=S A b+n
$$

$\{\boldsymbol{b}\}_{1, k} \triangleq b_{k}$, Users symbols

$$
\boldsymbol{A} \triangleq \operatorname{diag}\left(A_{1}, \ldots, A_{K}\right), \text { Users amplitudes }
$$

$\{\boldsymbol{S}\}_{k, p} \triangleq s_{k}\left(p T_{c}\right)$, Users signatures sampled at the chip rate $T_{c} \approx 1 / W$

- This model was used in [Hanly,Tse'99] to compare the performances of Linear Multiuser Detectors

Vectors with Random Covariances

- Sensor network

- The covariance matrix of $\boldsymbol{x}[k]=\left(x_{1}[k], \ldots, x_{n}[k]\right)$ depends on the relative distances between nodes $d_{i, j}$ which is random.
- We can study the rate distortion function of the data as a whole

Relevant Performance Measures

MIMO channel $\Rightarrow \boldsymbol{H}$ random, CDMA $\Rightarrow \boldsymbol{S}$ random

- MIMO channel Capacity and CDMA aggregate Capacity:

$$
C=\log \left|\sigma^{2} \boldsymbol{I}+\boldsymbol{H} \boldsymbol{H}^{H}\right| \quad C=\log \left|\sigma^{2} \boldsymbol{I}+\boldsymbol{S} \boldsymbol{A} \boldsymbol{A}^{H} \boldsymbol{S}^{H}\right|
$$

- MIMO channel MMSE for LMMSE receiver

$$
M M S E=\operatorname{Tr}\left(\left(\boldsymbol{I}+\boldsymbol{H}^{H} \boldsymbol{H} \sigma^{-2}\right)^{-1}\right)
$$

- LMMSE User SIR

$$
S_{I} R_{i}=s_{i}^{H}\left(\boldsymbol{S A} \boldsymbol{A}^{H} \boldsymbol{S}^{H}+\sigma^{2} \boldsymbol{I}\right)^{-1} \boldsymbol{s}_{i}
$$

- Decorrelating receiver User SIR

$$
S I R_{i}=\left\{\sigma^{2}\left(\boldsymbol{S A} \boldsymbol{A} \boldsymbol{A}^{H} \boldsymbol{S}^{H}\right)^{-1}\right\}_{i, i}^{-1}
$$

- Differential Entropy of Gaussian sensor data

$$
H(X)=\frac{1}{2} \log (2 \pi e)^{n}\left|\boldsymbol{R}_{x x}\right|
$$

- Field initiated by the pioneering work by Eugene Paul Wigner
- He searched for the asymptotic empirical density of the ordered random eigenvalues of an $n \times n$ symmetric $\boldsymbol{X}(\omega)$:

$$
\mu_{\omega}(x)=\frac{1}{n} \sum_{i=1}^{n} \delta\left(x-\lambda_{i i}(\boldsymbol{X}(\omega))\right)
$$

- Now we can run this 3 line worth Matlab experiment
>> $\mathrm{n}=600$; $\mathrm{B}=\mathrm{randn}(\mathrm{n}) ; \mathrm{A}=\left(\mathrm{B}+\mathrm{B}^{\prime}\right) /(2 * \operatorname{sqrt}(2 * \mathrm{n}))$; hist(eig(A),60) and see what Wigner derived with pencil and paper (semicircle law)

Asymptotic distribution we care about

Theorem [Machenko-Pastur '67]
Let $\boldsymbol{X}=\frac{1}{n} \boldsymbol{B}^{H} \boldsymbol{B}$ and $\boldsymbol{B} m \times n$ and such that $\alpha=m / n$:
(a) The elements of \boldsymbol{B}_{n} are i.i.d. random variables $\in \mathbb{C}$ with $E\left\{[\boldsymbol{B}]_{i, j}\right\}=0, \operatorname{Var}\left\{[\boldsymbol{B}]_{i, j}\right\}=1$ and $E\left\{\left|[\boldsymbol{B}]_{i, j}\right|^{4}\right\}<\infty$. $\mu_{\omega}(x)$ converges weakly as $n \rightarrow \infty$ to the Machenko-Pastur distribution

$$
\mu_{\alpha}(x)=\max (1-\alpha, 0) \delta(x)+\frac{\sqrt{(x-a)(b-x)}}{2 \pi x} 1_{[a, b]}(x)
$$

where $1_{[a, b]}(x)=1$ for $a \leq x \leq b$ and is zero elsewhere, $\delta(x)$ is a Dirac delta and:

$$
a:=(\sqrt{\alpha}-1)^{2}, \quad b:=(\sqrt{\alpha}+1)^{2}
$$

- More general asymptotic results are available (used for CDMA systems).

MIMO channel- Some Asymptotic results

$\gamma:=\frac{\mathcal{P}_{0} \sigma_{H}^{2}}{\sigma_{n}^{2}}$ The closed form expression for the normalized Capacity is

$$
C(\gamma)=\frac{1}{\log (2)}\left(\log (\gamma w)+\frac{1-\alpha}{\alpha} \log \left(\frac{1}{1-v}\right)-\frac{v}{\alpha}\right)
$$

where:

$$
\begin{aligned}
& w=\frac{1}{2}\left(1+\alpha+\gamma^{-1}+\sqrt{\left(1+\alpha+\gamma^{-1}\right)^{2}-4 \alpha}\right) \\
& v=\frac{1}{2}\left(1+\alpha+\gamma^{-1}-\sqrt{\left(1+\alpha+\gamma^{-1}\right)^{2}-4 \alpha}\right)
\end{aligned}
$$

Asymptotic results

The expressions of MSE and P_{e} are:

$$
\begin{gathered}
\overline{M S E}(\gamma)=\frac{1}{2 \alpha \gamma}(-\sqrt{a b} \gamma+\sqrt{1+a \gamma} \sqrt{1+b \gamma}-1) \\
P_{e}(\gamma) \leq \exp (-(1+\alpha) \gamma)\left(\frac{1}{2 \sqrt{\alpha}} I_{1}(2 \sqrt{\alpha} \gamma) \frac{1+\alpha}{4 \alpha} I_{0}(2 \sqrt{\alpha} \gamma)\right)
\end{gathered}
$$

Derivation of the Statistics

- Asymptotic results are ready to use (Examples later)
- Derivation of the Statistics for the finite case Matrix decompositions are Transformations of Random Variables!
- First step: deriving the Jacobian of the change of variables from the original matrix to its factors
- Verify the uniqueness: true in the case of EVD (almost true), QR or LU (lower-upper) decompositions and Cholesky decomposition
- One way of doing it: Exterior differential Calculus

Exterior Differential Calculus

- Seminal work of Élie Cartan
- Based on the concept of exterior product $\triangleq \wedge$, introduced by Hermann Günter Grassmann in 1844

Axioms of Grassman Exterior Algebra:

- $\alpha \wedge \alpha=0$
- $\alpha \wedge \beta=-\beta \wedge \alpha$
- $(a \alpha) \wedge \beta=a(\alpha \wedge \beta)$.

The axioms are sufficient to establish that:

$$
(\boldsymbol{A} \alpha) \wedge \beta=|\boldsymbol{A}|(\alpha \wedge \beta) .
$$

Amenity: Grassman at the age of 53 grew frustrated with the lack of interest in his mathematical work and turned to Sanskrit studies, writing a widely used dictionary.

What kind of product is $d x d y$? Is $d x \wedge d y$

- The product of differentials $d x d y$ behaves like $d x \wedge d y$ and we can use on it the axioms of Grassman Exterior Algebra
- To complete the description of Cartan's differential forms:

Axiomatic definition of the d operator

- $d(r$-form $)=(r+1)$-form
- $d(d x)=0$ (Poincarè Lemma)
- These rules are systematic and the results are simpler to grasp than the theory of manifolds

The Jacobian recipe

$\star d \boldsymbol{A}$ matrix of differentials
$\star(d \boldsymbol{A})$ the exterior product of the independent entries in $d \boldsymbol{A}$:

- for an arbitrary $\boldsymbol{A},(d \boldsymbol{A})=\wedge_{i} \wedge_{j} d a_{i j}$
- if \boldsymbol{A} is diagonal $(d \boldsymbol{A})=\wedge_{i} d a_{i i}$
- if $\boldsymbol{A}=\boldsymbol{A}^{T}$ or \boldsymbol{A} is lower triangular $(d \boldsymbol{A})=\wedge_{1 \leq i \leq j \leq n} d a_{i j}$
- for \boldsymbol{Q} unitary ... (not nice)
- Select the arbitrary unique matrix factorization, for Ex. $\boldsymbol{X}=\boldsymbol{A} \boldsymbol{B}$
- Apply the d operator $\rightarrow d \boldsymbol{X}=d \boldsymbol{A B}+\boldsymbol{A} d \boldsymbol{B}$
- Evaluate $(d \boldsymbol{A} \boldsymbol{B}+\boldsymbol{A} d \boldsymbol{B}), \wedge$ product of all the independent differentials

Warning: This last task requires the description of the group of matrices by mean of their independent parameters

The Stiefel Manifold

- A unitary \boldsymbol{Q} is described by n^{2} smooth functions that can be integrated over nice enough intervals (Stiefel Manifold)
- Clearly, the independent parameters of the Stiefel Manifold are not the real and imaginary parts of the elements of \boldsymbol{Q}
- n out of the n^{2} parameters are redundant (in the sense that the decomposition is unique up to n parameters), hence we can assume:
(a) The diagonal elements of \boldsymbol{Q} are real
- $\boldsymbol{Q} \boldsymbol{Q}^{H}=\boldsymbol{I} \rightarrow \boldsymbol{Q} d \boldsymbol{Q}^{H}=-d \boldsymbol{Q} \boldsymbol{Q}^{H}$
- Under (a) the diagonal elements of $\boldsymbol{Q} d \boldsymbol{Q}^{H}$ are zero and $\boldsymbol{Q} d \boldsymbol{Q}^{H}$ is antisymmetric

$$
(d \boldsymbol{Q}) \equiv\left(\boldsymbol{Q}^{H} d \boldsymbol{Q}\right)=\wedge_{i>j} \boldsymbol{q}_{i}^{H} d \boldsymbol{q}_{j}
$$

The Stiefel Manifold

- The uniform p.d.f. in the Stiefel group of orthogonal or unitary matrices is called Haar distribution

The volume of $\left(\boldsymbol{Q}^{H} d \boldsymbol{Q}\right)$ integrated over $\boldsymbol{Q}^{H} \boldsymbol{Q}=\boldsymbol{I}$, for \boldsymbol{Q} unitary, when the diagonal elements of $\boldsymbol{Q}_{m, n}$ are constrained to be real:

$$
\overline{\overline{\operatorname{Vol}}\left(\boldsymbol{Q}_{m, n}\right) \triangleq \int_{\boldsymbol{Q}^{H} \boldsymbol{Q}=1}\left(\boldsymbol{Q}^{H} d \boldsymbol{Q}\right)=\frac{(\pi)^{(m-1) n-n(n-1) / 2}}{\prod_{i=0}^{n-1} \Gamma(m-i)}, \underline{2}}
$$

The statistics of $\boldsymbol{A}=\boldsymbol{B}^{H} \boldsymbol{B}$

- $\boldsymbol{A}=\boldsymbol{B}^{H} \boldsymbol{B}$ with $p_{\boldsymbol{A}}(A)$ and $p_{\boldsymbol{B}}(B)$ the pdfs of the random matrices \boldsymbol{A} and \boldsymbol{B}
- Trick: Use QR and Cholesky decompositions first

$$
\boldsymbol{B}=\boldsymbol{Q} \boldsymbol{R}, \quad \boldsymbol{A}=\boldsymbol{R}^{H} \boldsymbol{R} .
$$

with $(d \boldsymbol{R})=\wedge_{i<j}\left(d r_{i j}\right)$
$(d \boldsymbol{A})=2^{n} \prod_{i=1}^{n}\left(\left|r_{i i}\right|^{2}\right)^{n+1-i}(d \boldsymbol{R}) \Longrightarrow p_{\boldsymbol{A}}(\boldsymbol{A})(d \boldsymbol{A})=p_{\boldsymbol{A}}\left(\boldsymbol{R}^{H} \boldsymbol{R}\right) \prod_{i=1}^{n} 2^{n}\left(\left|r_{i i}\right|^{2}\right)^{n+1-i}(d \boldsymbol{R})$
$(d \boldsymbol{B})=\prod_{i=1}^{n}\left(\left|r_{i i}\right|^{2}\right)^{m+1-i}(d \boldsymbol{R})(d \boldsymbol{Q}) \quad \Longrightarrow \quad p_{B}(\boldsymbol{B})(d \boldsymbol{B})=p_{B}(\boldsymbol{Q} \boldsymbol{R}) \prod_{i=1}^{n}\left(\left|r_{i i}\right|^{2}\right)^{m+1-i}(d \boldsymbol{R})(d \boldsymbol{Q})$
where $(d \boldsymbol{Q})=\left(\boldsymbol{Q}^{H} d \boldsymbol{Q}\right)$ is the element of volume of the Stiefel manifold

Generalized Wishart Density

$$
p_{A}(\boldsymbol{A})=2^{-n}|\boldsymbol{A}|^{m-n} \int p_{B}(\boldsymbol{Q} \sqrt{\boldsymbol{A}})\left(\boldsymbol{Q}^{H} d \boldsymbol{Q}\right)
$$

- When the p.d.f. $p_{B}(\boldsymbol{B})=p_{B}\left(\boldsymbol{B}^{H} \boldsymbol{B}\right)$ then:
- \boldsymbol{Q} and \boldsymbol{R} in the QR decomposition $\boldsymbol{B}=\boldsymbol{Q R}$, are independent
- The p.d.f. of \boldsymbol{Q} has Haar distribution
- The p.d.f. of \boldsymbol{A} is:

$$
p_{A}(\boldsymbol{A})=2^{-n}|\boldsymbol{A}|^{m-n} p_{B}(\boldsymbol{A}) \operatorname{Vol}\left(\boldsymbol{Q}_{m, n}\right)
$$

The statistics of the EVD $\boldsymbol{A}=\boldsymbol{B}^{H} \boldsymbol{B}$

$$
\begin{aligned}
(d \boldsymbol{A}) & =\left(d \boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{H}+\boldsymbol{U} d \boldsymbol{\Lambda} \boldsymbol{U}^{H}+\boldsymbol{U}^{H} \boldsymbol{\Lambda} d \boldsymbol{U}\right) \\
(d \boldsymbol{A}) & \equiv\left(\boldsymbol{U}^{H} d \boldsymbol{A} \boldsymbol{U}\right)=\left(\boldsymbol{U}^{H} d \boldsymbol{U} \boldsymbol{\Lambda}-\boldsymbol{\Lambda} \boldsymbol{U}^{H} d \boldsymbol{U}+d \boldsymbol{\Lambda}\right) \\
& =\prod_{1 \leq i<k \leq n}^{n}\left(\lambda_{k}-\lambda_{i}\right)^{2}(d \boldsymbol{\Lambda})\left(\boldsymbol{U}^{H} d \boldsymbol{U}\right) .
\end{aligned}
$$

In the general case of $\boldsymbol{A}=\boldsymbol{B}^{H} \boldsymbol{B}$:

$$
\begin{gathered}
p_{\boldsymbol{\Lambda}}(\boldsymbol{\Lambda})=2^{-n} \prod_{1 \leq i<k \leq n}^{n}\left(\lambda_{k}-\lambda_{i}\right)^{2} \Psi\left(\lambda_{1}, \ldots, \lambda_{n}\right) \\
\Psi\left(\lambda_{1}, \ldots, \lambda_{n}\right) \triangleq \int p_{A}\left(\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{H}\right)(d \boldsymbol{U}) . \\
\{\boldsymbol{B}\}_{i, j} \sim \mathcal{N}\left(0, \sigma^{2}\right) \Longrightarrow \Psi\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\prod_{i=1}^{n} \lambda_{i}\right)^{m-n} e^{-\frac{\Sigma_{i} \lambda_{i}}{\sigma^{2}}}
\end{gathered}
$$

MIMO frequency selective channel

Let's use all this machinery!
a1. The noise is AWGN with variance $\sigma_{n}^{2}=1$
a2. $\{\mathbf{H}[l]\}_{r, t}^{*}$ are spatially uncorrelated circularly symmetric $\mathcal{N}(0,1)$
(Rayleigh fading) with $R_{H}\left[l_{1}, l_{2}, r_{1}, r_{2}, t_{1}, t_{2}\right] \triangleq E\left\{\left\{\mathbf{H}\left[l_{1}\right]\right\}_{r_{1}, t_{1}}^{*}\right.$
$\left.\left\{\mathbf{H}\left[l_{2}\right]\right\}_{r_{2}, t_{2}}\right\}=\delta\left(t_{1}-t_{2}\right) \delta\left(r_{1}-r_{2}\right) R_{H}\left(l_{2}, l_{1}\right)$
a3. $n \triangleq \min \left(N_{T}, N_{R}\right), \quad m \triangleq \max \left(N_{T}, N_{R}\right)$

$$
C=\log \left|\boldsymbol{I}+\gamma \tilde{\boldsymbol{H}}^{H} \tilde{\boldsymbol{H}}\right|
$$

$$
\tilde{\boldsymbol{H}} \triangleq \operatorname{diag}(\tilde{\mathbf{H}}[\boldsymbol{d}]), \quad \boldsymbol{d} \triangleq(0, \ldots, L)
$$

$\tilde{\mathbf{H}}[k]$ is the MIMO transfer function at the k th frequency bin:
$\tilde{\mathbf{H}}[k]=\sum_{l=0}^{L} \mathbf{H}[l] e^{-j 2 \pi \frac{k l}{K}}$

Average Capacity

$$
E\{C\}=\sum_{k=0}^{K-1} \sum_{l=1}^{N_{T}} E\left\{\log \left(1+\gamma \lambda_{l}[k]\right)\right\}
$$

Under a1, a2, the average Capacity for any (n, m) is:

$$
E\{C\}=\sum_{k=0}^{K-1} \int_{0}^{\infty} \log \left(1+\gamma \sigma_{H}^{2}[k] x\right) \mu_{n}^{m-n}(x) d x
$$

with $\alpha=m-n\left(L_{k}^{\alpha}(x)\right.$ the Laguerre polynomials):

$$
\mu_{n}^{\alpha}(x)=\frac{1}{n} \sum_{k=0}^{n-1} \phi_{k}^{\alpha}(x)^{2} \quad \phi_{k}^{\alpha}(x) \triangleq\left[\frac{k!}{\Gamma(k+\alpha+1)} x^{\alpha} e^{-x}\right]^{1 / 2} L_{k}^{\alpha}(x)
$$

Characteristic function of C

$$
\Phi_{C}(s)=E\left\{e^{s C}\right\}=E\left\{\prod_{k=0}^{K-1}\left|\boldsymbol{I}+\gamma \tilde{\mathbf{H}}[k]^{H} \tilde{\mathbf{H}}[k]\right|^{s}\right\}
$$

a3. The number of frequency bins $K=Q(L+1)$.
Choosing $\mathbf{p}=(0, Q, \ldots, Q L)$, since $e^{-j \frac{2 \pi}{Q(L+1)} l l d}=e^{-j \frac{2 \pi}{L L+1)} l d}, \boldsymbol{W}_{L+1}$ is unitary
a4. $R_{H}\left(l_{1}, l_{2}\right)=R_{H}\left(l_{2}-l_{1}\right)$
$\Phi_{C}(s) \approx \gamma^{Q s n}\left(\prod_{l=0}^{L}\left(\sigma^{2}[l Q]\right)^{Q s+m-\frac{n(n+1)}{2}} \chi_{1}(l)\right) \prod_{i=1}^{n}(\Gamma(i) \Gamma(m-n+Q s+i))^{L+1}$,

- Outage Capacity through Chernoff bound

Numerical versus Theory plots

Conclusion

- The study of Random Matrices has produced several beautiful results that have immediate application in Communication systems analysis

