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‘Why should we be interested in this problem'

Percentage of papers appeared in 2001 that have at least one
matrix defined: 89% IT, 65% Com., 99.999999% SP

We all use MATLAB, we all own our personal copy of “Matrix
Computations” [Golub, Van Loan|. Tons of matrices are

decomposed everyday by ECE students

Random Matrices are practical, usetul and have beautiful

properties

Random Matrices are good for you: they make you realize that
your knowledge of Calculus is at the level of a Mickey Mouse

Cartoon
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Random Matrices in Communication Systems'

Multiple sources, Multiple Sensors

System with transmit and receive diversity
» Random Fading
» Random Space-Time Codes

Symbol Synchronous CDMA system

Data Vectors with Random Covariance
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MIMO Systems

x(t) = (21(t),..., 2, ()"

Multiple Access, Array Processing: x(t) from different sources
Transmit Diversity: x(t) = >. > _x[n]gr(t — nT) nx 1

Space-time code ¢ = (x[ny|,...,xny]) n xI
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MIMO Channel Output Model

y(t) = (1), - v (1)’
ylk| := y(kT) signals samples, T~ 1/W, W= Bandwidth

Narrowband Channel (Flat fading):

ylk| = H[k|x|k] + n[k] m X 1

Broadband Channel (Frequency selective):
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Symbol Synchronous CDMA system

Multiple sources, One sensor, Multiple samples
K
y(t) = Apbpsi(t) + n(t)
k=1

the vector {y}1, = y(pT.),

y=SAb+n
{b}1 1 = by, Users symbols
A = diag(A,, ..., Ag), Users amplitudes

{S}rp = sp(pT,), Users signatures sampled at the chip rate
T.~1/W

This model was used in [Hanly,Tse’99] to compare the
performances of Linear Multiuser Detectors
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Vectors with Random Covariances

Sensor network

The covariance matrix of k] = (x1]k], ..., x,|k]) depends on the
relative distances between nodes d; ; which 1s random.

We can study the rate distortion function of the data as a whole
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Relevant Performance Measures
MIMO channel = H random, CDMA = S random
MIMO channel Capacity and CDMA aggregate Capacity:
C =log|o’T + HH" C =log|o’T + SAA"S"
MIMO channel MMSE for LMMSE receiver
MMSE =Tr((I + H"Ho?)™)
LMMSE User SIR
SIR; = s/ (SAA"SY + oI 's;
Decorrelating receiver User SIR
SIR; = {c*(SAA"S")1}]
Differential Entropy of Gaussian sensor data

1
H(X) = 5 log(2me)" | R |
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Random Eigenvalues -

Field initiated by the pioneering work by Eugene Paul Wigner

He searched for the asymptotic empirical density of the ordered
random eigenvalues of an n x n symmetric X (w):

o) = = 370 = XX ()

Now we can run this 3 line worth MATLAB experiment
>> n=600; B=randn(n); A=(B+B’)/(2*sqrt(2*n)); hist(eig(A),60)

and see what Wigner derived with pencil and paper (semicircle law)
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Asymptotic distribution we care about

Theorem [Machenko-Pastur '67]

Let X = 1B"B and B m x n and such that o = m/n:

(a) The elements of B, are i.i.d. random variables € C with
E{[Bli;} =0, Var{[B];;} = 1 and E{|[B];;|*} < cc.

e, () converges weakly as n — oo to the Machenko-Pastur
distribution

VE—ab—q),

2T [a.2] (x>

where 1,(x) =1 for a < x < b and is zero elsewhere, 6(x) is a
Dirac delta and:

a:=(Va-1)7", b=\a+l)

More general asymptotic results are available (used for CDMA

to(x) = max(1 — a, 0)d(x) +

systems).
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MIMO channel- Some Asymptotic results'

2
v = 73(07# The closed form expression for the normalized Capacity is

n

Cly)= logl(Q) <1og(7 w)+ ;a log (1 i U) ~ 2)

where:

l\9|’—‘[\')|+—l

(1+&+7_1+\/(1+a+7—1)2—4a)
=3

1—|—oz—|—'y_1—\/(1—|—oz—|—7_1)2—404>
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Asymptotic results

The expressions of MSE and P, are:
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Derivation of the Statistics'

Asymptotic results are ready to use (Examples later)
Derivation of the Statistics for the finite case
Matrix decompositions are Transformations of Random Variables!

» First step: deriving the Jacobian of the change of variables
from the original matrix to its factors

» Verify the uniqueness: true in the case of EVD (almost true),
QR or LU (lower-upper) decompositions and Cholesky
decomposition

One way of doing it: Exterior differential Calculus

Anna Scaglione
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'Exterior Differential Calculus'

Seminal work of Elie Cartan

Based on the concept of exterior product = A, introduced by
Hermann Ginter Grassmann in 1844

Axioms of Grassman Exterior Algebra:

» aNa=10

> aN f=— AN«

> (aa) N B=alaN B).

The axioms are sufficient to establish that:
(Aa) A G = |Al(a A D).

Amenity: Grassman at the age of 53 grew frustrated with the lack of interest in his

mathematical work and turned to Sanskrit studies, writing a widely used dictionary.
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What kind of product is dzdy? Is dx A dy
o)

dy

The product of differentials dxdy behaves like dx A dy and we can
use on it the axioms of Grassman Exterior Algebra

To complete the description of Cartan’s differential forms:
Axiomatic definition of the d operator
» d(r-form) = (r 4+ 1)-form
» d(dr) =0 (Poincare Lemma)

These rules are systematic and the results are simpler to grasp
than the theory of manifolds
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The Jacobian recipe

% dA matrix of differentials

% (dA) the exterior product of the independent entries in dA:
» for an arbitrary A, (dA) = A; Aj day;
» if A is diagonal (dA) = A;da;;
» if A= A" or A is lower triangular (dA) = A1<icj<nda;
» for @ unitary ... (not nice)

Select the arbitrary unique matrix factorization, for Ex. X = AB
Apply the d operator — dX = dAB + AdB

Evaluate ({AB + AdB), A product of all the independent
differentials

Warning: This last task requires the description of the group of
matrices by mean of their independent parameters
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The Stiefel Manifold

A unitary Q is described by n? smooth functions that can be
integrated over nice enough intervals (Stiefel Manifold)

Clearly, the independent parameters of the Stiefel Manifold are not
the real and imaginary parts of the elements of Q

n out of the n? parameters are redundant (in the sense that the
decomposition is unique up to n parameters), hence we can
assume:

(a) The diagonal elements of Q are real

QR" =1 — QIQ" = -dQQ"
Under (a) the diagonal elements of QdQ" are zero and QdQ" is

antisymmetric

(dQ) = (QHdQ) = /\z'>ijqu]'
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The Stiefel Manifold

factors of
Vol(Qy 5)

Q orhtogonal

o The uniform p.d.f. in the Stiefel group of orthogonal or unitary
matrices is called Haar distribution

The volume of (Q”dQ) integrated over Q”Q = I, for Q unitary,
when the diagonal elements of @, ,, are constrained to be real:

(71‘) (m—1)n—n(n—1)/2

H:;:ol ['(m — 1)

VolQ,) 2 [ (@"iQ) -

17
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The statistics of A = B”B

A = B" B with p,(A) and pz(B) the pdfs of the random matrices A and B
Trick: Use QR and Cholesky decompositions first

B=QR, A=R"R.
with (dR) = /\i<j (dT‘ij)

n n

(dA) = 2" T[ ()™ " (dR) = pa(A)(dA) = pa(RR) ] 2" (jr>)"" " (dR)

n

(dB) = [[(ral>)™' " (dR)(dQ) = ps(B)(dB)=ps(QR) [ (Ir«>)"" ' (dR)(dQ)

where (dQ) = (Q"dQ) is the element of volume of the Stiefel manifold
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Generalized Wishart Density

pa(A) = 277 A" / Pa(QVA)Q"dQ)

When the p.d.f. p,(B) = p,(B" B) then:

» ( and R in the QR decomposition B = QR, are independent
» The p.d.f. of Q has Haar distribution
» The p.d.f. of A is:

Pa(A) =27"|A[""pa(A)Vol(Q,, )
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The statistics of the EVD A = BB

(dA) = (dUAU" + UdAU" + U" AdU)
(U"dAU) = (U"dUA — AU"dU + dA)

~—~
SH
>

~—
|

= ]| w—2)aA)Urav).

1<i<k<n

In the general case of A = B” B:
pa(A) = 27 H M — X)W (A, A

TN, A é/ LJUAUM(AU).

P
Y

{B}.; ~N(0,0%) = U(\,....\) = ([ )" e
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MIMO frequency selective channel'

Let’s use all this machinery!

al. The noise is AWGN with variance o2 = 1

a2. {H[l]};, are spatially uncorrelated circularly symmetric N (0, 1)
(Rayleigh fading) with Ryli,ls, 71, 72,11, t2] = E{{H[l]}; .,
{Hlo)}rpts } = 0(t1 — t2) 0(r1 — 12) Ru(l2, l1)

a3. n 2 min(Np, Ng) , m 2 max(Np, Ng)

C’zlog\IﬂL’yI:IHI:I\

~ ~

H 2 diagH[d]), d=(0,...,L),

k] is the MIMO transfer function at the kth frequency bin:

H
HK = 30, Hllle 7>
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Average Capacity

receive

. channel response:
.-~~~ one matrix (array manifold)
- per frequency bin

transmit
antennas

K—-1 Nr

E{C}= ) > Ef{log(l+yAlk])}

k=0 [=1

Under al, a2, the average Capacity for any (n,m) is:
K—1 o0
E{C} = Z / log (1 + oy [klx) pp " (z)dx
k=0 0

with @ = m —n (L} (z) the Laguerre polynomials):
1 n—1 k! 1/2

D) =T Y RGP RO et L)
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Characteristic function of ('

k=0
a3. The number of frequency bins K = Q(L + 1).
Choosing p = (0,Q, ...,QL), since eI @d — e_j@zTWl)ld, Wi is
unitary
a4. RH(ll, lg) = RH(ZQ — ll)

Do(s) ~ AP <H<a2[1Q1>@S+mel<z>>

[=0

Po(s) = E{e“} = E { 1__[ 1T+ vﬁ[k]HfI[k]s}

(LT (m —n+ Qs +1))"*,

1

1

» QOutage Capacity through Chernoft bound

Anna Scaglione



2002 Telecomm. Seminar

1010

10

10

10°

10710

phic(s)

10"

10720

-25

10

10*30

-35

10

Numerical versus

The plot of characteristic function of C

K=8,L=7,NR=2,NT=2

—+ Using approximations
—+-Using Monte Carlo sim
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Theory plots

The plot of characteristic function of C

K=8,L=4,NR=3,NT=2

—t+ Using approximations
—+-Using Monte Carlo sim
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Conclusion I

» The study of Random Matrices has produced several beautiful
results that have immediate application in Communication systems
analysis
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