
DMA
The Hidden Key to DSP Systems

Steve Krueger
DSP Architecture Group

Dallas



What Do DSP Systems Do?

• Process
– filter, scale, transform, encode/decode,

correlate, etc.
– these operations are processor and data

intensive
• Signals

– generally continuous or nearly continuous
streams of sampled real-world data

– usually, real-time



Impediments to Processing

• Can’t process until data is received
(often a whole block of data)

• Most algorithms have many memory
accesses

• Memory access latency increases with
memory size and distance from
processor

• Some operations too specialized for
general purpose DSP



Model System

Digital
Signal

Processor

Local
Mem

off chip memory

Large
On-Chip
Memory

CoProc

a few cycles
~ 10 cycles

50 - 100 cycles

M e m o r y   L a t e n c y

off chip data 
source/sinkPeriph

DMA Proc

int



C6400 System

C6400
DSP

16 kB
Mem

off chip memory

1024 kB
On-Chip
Memory

Correlation
CoProc

a few cycles
~ 10 cycles

50 - 100 cycles

M e m o r y   L a t e n c y

off chip data 
source/sinkMcBSP

EDMA

int



DMA Solves Two Problems

• I/O interrupt loading slows processor
work on tasks

• Data in close memory avoids latency
for higher performance



Problem of Interrupt Loading

• Each peripheral usually interrupts to
indicate data ready.

• Processor takes interrupt by entering
an interrupt handler, transferring the
data, then resuming the interrupted
processing.

• This interrupt sequence takes at least
20 cycles on most modern
architectures — many more on some.



Interrupts of High Speed Peripheral

• A high-speed peripheral can generate
a lot of interrupts:
– say you have a 1 Msps ADC that

produces an 8-bit conversion every
microsecond.

– If you interrupt for every conversion, have
1 million interrupts per second.

– If the interrupt takes 30 cycles, this is
using 5% of a C6416 at 600 MHz.

– What if your system needs 8 of these?



Solutions to Interrupt Problem

• Can buffer at the peripheral and
interrupt less frequently.  Might
interrupt once per 32 conversions
– increases complexity and cost of

peripheral, adds latency to peripheral data,
more complex error handling

• Can make peripheral a bus master and
have it store data into memory.
– Increases the complexity and cost of

peripheral



Solutions — continued

• Can have a central bus master to
service any peripheral
– keeps peripherals simple and shares cost

between all peripherals
– This is the basic idea of DMA (Direct

Memory Access)



DMA Terms

• Event - a hardware signal that initiates
a transfer on a DMA channel

• Channel - one thread of transfer.  It
contains source and destination
addresses plus control information

• Element: 8-, 16-, 32-bit datum
• Frame: Group of elements
• Array: Group of contiguous elements
• Block: Group of Frames or Arrays



Peripheral DMA Flow

I/O
Periph.

DMA
Controller

Memory

event  Peripheral signals
an event to
indicate it has data
ready.

Read data register

 DMA Controller
reads peripheral
dataW

rit
e 

to
 m

em
or

y
 DMA Controller
writes data to
memory



TI EDMA Peripheral DMA Flow

I/O
Periph.

EDMA
Channel

Processor

Memory

event

 Peripheral signals
an event to
indicate it has data
ready.

Transfer
Controller

Read

 Transfer Controller
reads data register

 EDMA Controller
sends a data
transfer command
to data move
engine

Send transfer cmd

Write

 Transfer Controller
writes memory



Interrupt Reduction

• DMA processes I/O events to
accumulate buffers for processing

• Reduces DSP interrupts by 10-1000
times and increases tolerable interrupt
latency by a similar factor

Events:

Transfers:

Interrupts:

Buffers:



Memory Latency Reduction

• Program’s performance is reduced
when accessing long latency
memories.

• Two ways of implementing processors:
– overall stall - all processor activity waits
– dependence stall - all dependent

operations wait



C6400 System

C6400
DSP

16 kB
Mem

off chip memory

1024 kB
On-Chip
Memory

Correlation
CoProc

a few cycles
~ 10 cycles

50 - 100 cycles

M e m o r y   L a t e n c y

off chip data 
source/sinkMcBSP

EDMA

int



Cost of Dependence Stall

• Dependence stall is expensive to implement.
These are the techniques of out-of-order
CPU architecture.

• Must examine large “window” of instructions
to find those (few) that aren’t dependent on
any pending operation.

• Must keep a time-dependent set of
processor state (GPRs) so each instruction
can run in proper environment.

• Must discard or rewind state on exception or
other interruption.



Memory Stalls in DSP Systems

• Dependence stall (out-of-order)
techniques are too expensive for DSP
systems.

• They also make it harder to predict the
real-time behavior.

• No DSPs have used these techniques.
• Instead, all DSPs have used total stall

during memory latency.
• Inexpensive but can hurt performance.



Effects of Memory Latency

0

100

200

300

400

500

600

700

Local On-chip Off-chip

Execution Time



Cache Memory

• Cache memory is well known to address the
problem of keeping frequently accessed
information in a local memory for low-latency
access.

• But cache has problems in some DSP
applications:
– Data isn’t always reused, or has limited reuse
– Cache only loads data when requested the first

time
– Cache line size may not be a good match for

data size



Effects of Cache Memory

0
10
20
30
40
50
60
70
80
90

100

Local On-chip Off-chip

Execution Time



Addressible Local RAM

• Most newer TI DSPs have selection
facilities that allow local RAM to be
either cache memory or addressible
RAM.

• If a programmer is clever and uses
DMA, local RAM can be very effective
in many DSP applications, achieving
near ideal processing rates.



Stream Processing

• Data supply is an infinite (or practically
infinite) stream.

• The arrival of data is predictable.
• Each datum or block of data is

processed the same.
• The processing is very regular and

predictable.
A problem with these characteristics allows
for accurate prediction of which data will be
needed and when.



This is a job for DMA!

Basic Plan

• Block algorithm to process buffers of input
samples

• Wrap buffer processing loop with a data
transfer loop.

• Perform transfers in parallel with processing.
• Work inbound transfers ahead of processing

so will complete before needed.
• Perform outbound transfers once processing

complete.



Streaming Prefetch Loop Nest

Setup and initialization

Outer loop to prefetch source
buffers using DMA and double
buffering

Inner loop performs algorithm on
a buffer producing an output
buffer

Outer loop to post-store the
output buffers using DMA and
double buffering

Cleanup and exit

ap
pl

ic
at

io
n

al
go

rit
hm

da
ta

 tr
an

sf
er

 lo
op



Data Transfer Loop

Prev ibuf
arrived? N

to alg

Prepare
prefetch

Start
DMA

start from alg

Prev obuf
done? N

Loop to start

Prepare
poststore

Start
DMA



Prepare and Start DMA

• To prepare and start a DMA transfer,
need to:
– write a channel program and store it in the

DMA controller
– signal an event to trigger that channel

program
• This can be slow

– Might write and store once then reuse
– Might have a faster means for Quick

Transfers



Quick DMA

• C6x1x processors have QDMA
• QDMA are a set of control registers

that initiate a TC transfer immediately.
• Need only supply:

– source address
– destination address
– a transfer length
– and control bits



C6400 System

C6400
DSP

16 kB
Mem

off chip memory

1024 kB
On-Chip
Memory

Correlation
CoProc

a few cycles
~ 10 cycles

50 - 100 cycles

M e m o r y   L a t e n c y

off chip data 
source/sinkMcBSP

EDMA

int



C6400 System — really

C6400
DSP

16 kB
RAM/$

off chip
memory

1024 kB
On-Chip
RAM/$

Correlation
CoProc

off chip data 
source/sinkMcBSP

EDMA
Controller

Transfer
Controller EMIF

int



EDMA Highlights
• 16 Channels

– Each channel may chain multiple transfers directed by
parameter sets

– 60+ additional parameter sets for reload and linked transfers
– Performs all transfer types done by C6x0x DMA
– Programmed via a dedicated parameter RAM (PaRAM)

• Highly Efficient Transfer Controller (TC)
– Crossbar architecture processes multiple transfers

concurrently
– Highly-efficient and fully-pipelined cycle-by-cycle

prioritization for low channel turn around
• TC services all DSP and cache memory requests in

addition to EDMA channel program transfers



EDMA Controller Features
• High Performance: single cycle throughput
• 2KB Parameter RAM stores up to 85 transfer entries
• 16 channels programmable for

– Element size (byte, half-word, word)
– Src/Dst Addressing Modes
– Transfer Type (2D or non-2D)
– Priority of the transfer
– Linked transfers
– Chaining channels with one event

• Up to 16 Sync events (from external device or
peripheral)

• Generates a CPU interrupt upon transfer completion
• Emulation and Endian Support



EDMA Controller Concepts
• Terms

– Element: 8-, 16-, 32-bit
– Frame: Group of elements
– Array: Group of contiguous elements
– Block: Group of Frames or Arrays
– 2-D Transfer: Block transfer of Arrays
– Non-2D Transfer: Block Transfer of Frames

• 2KB Parameter RAM
– Stores transfer parameters for 16 channels
– Stores reload parameters for up to 69 entries
– Each entry comprises 6 words; always align on

24-byte boundary



Programmable Addressing
• Src and /or Dst Address can:

– Remain Static
– Increment
– Decrement
– Modified by signed index values
– Replaced with Link parameters

• Independently programmable for Source and
Destination

• Indexing allows different strides between elements
and between frames

• Allows:
– 2D  Block Transfers on a single event
– Circular Buffering via Linked List
– Data Sorting/Interleaving



• EDMA architecturally has three sections
– EDMA controller and parameter RAM

– Transfer Crossbar (TC)

– Transfer Request (TR) nodes

EDMA Architecture

EDMA TC

TR TR Request Queues

I/O ports:
EMIF, McBSPs,
internal memory,

HPI

System events
(McBSP requests,
timers, /EINTz,
CPU initiated

L2/QDMA Requests

TR

HPI Requests



EDMA Controller and PaRAM
• Captures events from all

system DMA requesters
• Simultaneous events

serviced via priority encoder
• FSM reads parameter block

from dedicated 2KB PaRAM
• Formatted to create a TRP

(Transfer Request Packet),
and sent to TC via TR node

• Parameter updates and
linking, while TC performs
I/O

• Essentially, multi-threaded,
special-purpose processor

Channel 1 Params

Channel N Params

Channel 0 Params

Reload Channel 0
Params

Reload Channel 1
Params

Reload Channel N
Params

unused (scratch area)

priority
encoder

Finite
State
Machine

TR
node

upstream TR nodes downstream TR nodes (TC)

ev
en

ts
 (s

er
ia

l p
or

ts
, F

IF
O

AF
/A

E,
 e

xt
er

na
l d

ev
ic

es
)

EDMA Parameter RAM



EDMA Transfer Parameters
Address Event Parameters
0x01A00000 Event 0, Options
0x01A00004 Event 0, SRC Address
0x01A00008 Event 0,

Array/Frame Count
Event 0,
Element Count

0x01A0000C Event 0, DST Address
0x01A00010 Event 0,

Array/Frame Index
Event 0,
Element Index

0x01A00014 Event 0, Element
Count Reload

Event 0,
Link Address

0x01A00018
to 0x01A0002C

Parameters For Event 1

… …
0x01A00168

to 0x01A0017C
Parameters For Event 15

Address Reload/Link Parameters
0x01A00180 Event N, Options
0x01A00184 Event N, SRC Address
0x01A00188 Event N,

Array/Frame Count
Event N,
Element Count

0x01A0018C Event N, DST Address
0x01A00190 Event N,

Array/Frame Index
Event N,
Element Index

0x01A00194 Event N, Element
Count Reload

Event N,
Link Address

… …
0x01A007E0

to 0x01A007F7
Reload Parameters for Event Z

Unused RAM
0x01A007F8 -

0x01A007FF
Scratch Pad Area

31                     16 15                      0
OPTIONS Word 0

SRC ADDRESS Word 1
ARRAY/FRAME

COUNT
ELEMENT COUNT Word 2

DST ADDRESS Word 3
ARRAY/FRAME

INDEX
ELEMENT INDEX Word 4

ELEMENT COUNT
RELOAD

LINK ADDRESS Word 5

31        29 28      27 26      25 24     23 22 21 20 19         16 15      2 1 0
PRI ESIZE SUM DUM 2DS 2DD TCINT TCC Resv LINK FS

Options Field

Event N Parameters



EDMA Transfer Priority
• Channels have no priorities; Instead their transfer

parameters have Programmable Priority
• 3 Priority Levels available:

– Level 0 / Urgent: NOT valid for EDMA Transfers
– Level 1 / High: Used by EDMA/HPI Transfers
– Level 2 / Low: Used by EDMA Transfers

• Level 1 and 2 Priorities are independently
programmable for 16 channels when competing
for:
– EMIF
– Peripherals
– L2 SRAM

• Priority Queue Status Register indicates if a priority
queue is empty



EDMA: Interrupt Generation
• Generates a single CPU interrupt (EDMA_INT) for all

16 channels
• Transfer Completion Code (TCC:0-15) specified for

each channel sets the relevant Channel Interrupt
Pending bit in CIPR (assuming that the relevant CIER
bit is set)
– Multiple channels can have same TCC - same ISR for

different events

• Channel Complete Interrupt is generated when the
channel executes the transfer to completion -- not
when the transfer request is submitted



TC Architecture

• TR Packets are placed into one of three queues (0 = highest,
2 = lowest)

• Transfers are performed in order within each queue
• TC pipeline processes each set of TR parameters to perform

accesses
• All three queues can be active simultaneously



Typical EDMA Flow

McBSP

L2/internal

TR TR Q0

Q2

Q1

Queues TC

SRC

DST

RU

REVT

Pr
e-

W
R

 c
m

d

DRR data

da
ta

W
R

 c
m

d

RD cmd

EDMA



EDMA Example #1

• Source elements spaced by EIX and frames by FIX
• All destination transfers go to a single address
• EDMA supports linear, fixed, decrement, and indexed

addressing modes

AllDestination address

Source address 0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

0x23000000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
Don't care Don't care

31 0

0001 00 11 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16



EDMA Example #2 - Linking

EIX

FIX

SRC Address
(McBSP)

Buff 1

frame count = 3 (N - 1)

element

element count = 4

1 element per
occurrence

EIXBuff 2
link

FIX4 5 6 74 5 6 74 5 6 7

0 1 2 30 1 2 30 1 2 3 frame

• Double buffering can be easily
set up using linking feature of
EDMA

• Each buffer can create an
interrupt to CPU to inform it
data is ready
(alternatively an EDMA
transfer can set a S/W-visible
flag)

• Increased numbers of buffers
can easily be added through
EDMA parameters

• Many exotic combinations are
possible using EDMA options,
linking and reload



EDMA Example #2 - Linking
Options

McBSP

FM CT = 3

Buff 1

EIX

El CT Reload = 4

EL CT = 4

FIX

Link Address

2DS = 0, 2DD = 0, FS = 0
SRC DIR = 00 (fixed),
DST DIR = 11 (indexed)

Options

McBSP

FM CT = 3

Buff 2

EIX

El CT Reload = 4

EL CT = 4

FIX

Link Address

2DS = 0, 2DD = 0, FS = 0
SRC DIR = 00 (fixed),
DST DIR = 11 (indexed)

Options

McBSP

FM CT = 3

Buff 1

EIX

El CT Reload = 4

EL CT = 4

FIX

Link Address

2DS = 0, 2DD = 0, FS = 0
SRC DIR = 00 (fixed),
DST DIR = 11 (indexed)

in
iti

al
 s

et
up

 - 
1 

of
to

p 
16

 e
nt

rie
s

an
yw

he
re

 in
 E

D
M

A
R

AM interrupt to CPU (optional)

interrupt to CPU (optional)

interrupt to CPU (optional)



Quick DMA (QDMA)

PRI ESZ SUM DUM2DS 2DD TCINT
31 29 28 27 26 25 24 23 22 21 20

TCC
19 16

Reserved FS
15 1 0

QDMA Options

source address

Element CountLine Count

031

031 16 15

Destination Address

Element IndexLine/Frame Index

031

031 16 15

QDMA_SRC

QDMA_DST

QDMA_OPT

QDMA_CNT

QDMA_IDX

0x02000000

0x02000004

0x02000008

0x0200000C

0x02000010

031

QDMA Options

source address

Element CountLine Count

031

031 16 15

Destination Address

Element IndexLine/Frame Index

031

031 16 15

QDMA_S_SRC

QDMA_S_DST

QDMA_S_OPT

QDMA_S_CNT

QDMA_S_IDX

0x02000020

0x02000024

0x02000028

0x0200002C

0x02000030

031

sa
m

e 
ph

ys
ic

al
 re

gi
st

er
 s

et

• QDMAs can be submitted
by CPU as a “fire-n-forget”
type block transfer

• QDMA registers are
accessible in a single cycle

• Pseudo-mapping of submit
registers allow back-to-
back similar transfers to be
submitted in a single cycle

• QDMAs support all
addressing modes as the
EDMA

• QDMAs do not support
linking, but may be
“chained” to EDMA events



QDMA Programming Model
• Initial requests

– Perform 4 writes to QDMA registers to set up
parameters

– Perform fifth write to QDMA pseudo register to set
up fifth parameter and automatically submit
transfer request

• Subsequent requests
– Write only changing parameters to QDMA pseudo

registers to update parameters and submit request
• Interrupts and chaining are supported

exactly as with the EDMA



Conclusion

• Two ways that DMA is important in
DSP systems:
– Lower interrupt rate and therefore lower

overhead from interrupts
– Scheduling data into low-latency

memories
• These have convinced DSP vendors to

provide sophisticated DMA controllers
in our on-chip systems.


	DMAThe Hidden Key to DSP Systems
	What Do DSP Systems Do?
	Impediments to Processing
	Model System
	C6400 System
	DMA Solves Two Problems
	Problem of Interrupt Loading
	Interrupts of High Speed Peripheral
	Solutions to Interrupt Problem
	Solutions — continued
	DMA Terms
	Peripheral DMA Flow
	TI EDMA Peripheral DMA Flow
	Interrupt Reduction
	Memory Latency Reduction
	C6400 System
	Cost of Dependence Stall
	Memory Stalls in DSP Systems
	Effects of Memory Latency
	Cache Memory
	Effects of Cache Memory
	Addressible Local RAM
	Stream Processing
	Basic Plan
	Streaming Prefetch Loop Nest
	Data Transfer Loop
	Prepare and Start DMA
	Quick DMA
	C6400 System
	C6400 System — really
	EDMA Highlights
	EDMA Controller Features
	EDMA Controller Concepts
	Programmable Addressing
	EDMA Architecture
	EDMA Controller and PaRAM
	EDMA Transfer Parameters
	EDMA Transfer Priority
	EDMA: Interrupt Generation
	TC Architecture
	Typical EDMA Flow
	EDMA Example #1
	EDMA Example #2 - Linking
	EDMA Example #2 - Linking
	Quick DMA (QDMA)
	QDMA Programming Model
	Conclusion

