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What Do DSP Systems Do?

• Process
– filter, scale, transform, encode/decode,

correlate, etc.
– these operations are processor and data

intensive
• Signals

– generally continuous or nearly continuous
streams of sampled real-world data

– usually, real-time



Impediments to Processing

• Can’t process until data is received
(often a whole block of data)

• Most algorithms have many memory
accesses

• Memory access latency increases with
memory size and distance from
processor

• Some operations too specialized for
general purpose DSP
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DMA Solves Two Problems

• I/O interrupt loading slows processor
work on tasks

• Data in close memory avoids latency
for higher performance



Problem of Interrupt Loading

• Each peripheral usually interrupts to
indicate data ready.

• Processor takes interrupt by entering
an interrupt handler, transferring the
data, then resuming the interrupted
processing.

• This interrupt sequence takes at least
20 cycles on most modern
architectures — many more on some.



Interrupts of High Speed Peripheral

• A high-speed peripheral can generate
a lot of interrupts:
– say you have a 1 Msps ADC that

produces an 8-bit conversion every
microsecond.

– If you interrupt for every conversion, have
1 million interrupts per second.

– If the interrupt takes 30 cycles, this is
using 5% of a C6416 at 600 MHz.

– What if your system needs 8 of these?



Solutions to Interrupt Problem

• Can buffer at the peripheral and
interrupt less frequently.  Might
interrupt once per 32 conversions
– increases complexity and cost of

peripheral, adds latency to peripheral data,
more complex error handling

• Can make peripheral a bus master and
have it store data into memory.
– Increases the complexity and cost of

peripheral



Solutions — continued

• Can have a central bus master to
service any peripheral
– keeps peripherals simple and shares cost

between all peripherals
– This is the basic idea of DMA (Direct

Memory Access)



DMA Terms

• Event - a hardware signal that initiates
a transfer on a DMA channel

• Channel - one thread of transfer.  It
contains source and destination
addresses plus control information

• Element: 8-, 16-, 32-bit datum
• Frame: Group of elements
• Array: Group of contiguous elements
• Block: Group of Frames or Arrays
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TI EDMA Peripheral DMA Flow
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Interrupt Reduction

• DMA processes I/O events to
accumulate buffers for processing

• Reduces DSP interrupts by 10-1000
times and increases tolerable interrupt
latency by a similar factor

Events:

Transfers:

Interrupts:

Buffers:



Memory Latency Reduction

• Program’s performance is reduced
when accessing long latency
memories.

• Two ways of implementing processors:
– overall stall - all processor activity waits
– dependence stall - all dependent

operations wait
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Cost of Dependence Stall

• Dependence stall is expensive to implement.
These are the techniques of out-of-order
CPU architecture.

• Must examine large “window” of instructions
to find those (few) that aren’t dependent on
any pending operation.

• Must keep a time-dependent set of
processor state (GPRs) so each instruction
can run in proper environment.

• Must discard or rewind state on exception or
other interruption.



Memory Stalls in DSP Systems

• Dependence stall (out-of-order)
techniques are too expensive for DSP
systems.

• They also make it harder to predict the
real-time behavior.

• No DSPs have used these techniques.
• Instead, all DSPs have used total stall

during memory latency.
• Inexpensive but can hurt performance.
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Cache Memory

• Cache memory is well known to address the
problem of keeping frequently accessed
information in a local memory for low-latency
access.

• But cache has problems in some DSP
applications:
– Data isn’t always reused, or has limited reuse
– Cache only loads data when requested the first

time
– Cache line size may not be a good match for

data size
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Addressible Local RAM

• Most newer TI DSPs have selection
facilities that allow local RAM to be
either cache memory or addressible
RAM.

• If a programmer is clever and uses
DMA, local RAM can be very effective
in many DSP applications, achieving
near ideal processing rates.



Stream Processing

• Data supply is an infinite (or practically
infinite) stream.

• The arrival of data is predictable.
• Each datum or block of data is

processed the same.
• The processing is very regular and

predictable.
A problem with these characteristics allows
for accurate prediction of which data will be
needed and when.



This is a job for DMA!

Basic Plan

• Block algorithm to process buffers of input
samples

• Wrap buffer processing loop with a data
transfer loop.

• Perform transfers in parallel with processing.
• Work inbound transfers ahead of processing

so will complete before needed.
• Perform outbound transfers once processing

complete.



Streaming Prefetch Loop Nest
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Outer loop to prefetch source
buffers using DMA and double
buffering
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a buffer producing an output
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Data Transfer Loop
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Prepare and Start DMA

• To prepare and start a DMA transfer,
need to:
– write a channel program and store it in the

DMA controller
– signal an event to trigger that channel

program
• This can be slow

– Might write and store once then reuse
– Might have a faster means for Quick

Transfers



Quick DMA

• C6x1x processors have QDMA
• QDMA are a set of control registers

that initiate a TC transfer immediately.
• Need only supply:

– source address
– destination address
– a transfer length
– and control bits
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C6400 System — really

C6400
DSP

16 kB
RAM/$

off chip
memory

1024 kB
On-Chip
RAM/$

Correlation
CoProc

off chip data 
source/sinkMcBSP

EDMA
Controller

Transfer
Controller EMIF

int



EDMA Highlights
• 16 Channels

– Each channel may chain multiple transfers directed by
parameter sets

– 60+ additional parameter sets for reload and linked transfers
– Performs all transfer types done by C6x0x DMA
– Programmed via a dedicated parameter RAM (PaRAM)

• Highly Efficient Transfer Controller (TC)
– Crossbar architecture processes multiple transfers

concurrently
– Highly-efficient and fully-pipelined cycle-by-cycle

prioritization for low channel turn around
• TC services all DSP and cache memory requests in

addition to EDMA channel program transfers



EDMA Controller Features
• High Performance: single cycle throughput
• 2KB Parameter RAM stores up to 85 transfer entries
• 16 channels programmable for

– Element size (byte, half-word, word)
– Src/Dst Addressing Modes
– Transfer Type (2D or non-2D)
– Priority of the transfer
– Linked transfers
– Chaining channels with one event

• Up to 16 Sync events (from external device or
peripheral)

• Generates a CPU interrupt upon transfer completion
• Emulation and Endian Support



EDMA Controller Concepts
• Terms

– Element: 8-, 16-, 32-bit
– Frame: Group of elements
– Array: Group of contiguous elements
– Block: Group of Frames or Arrays
– 2-D Transfer: Block transfer of Arrays
– Non-2D Transfer: Block Transfer of Frames

• 2KB Parameter RAM
– Stores transfer parameters for 16 channels
– Stores reload parameters for up to 69 entries
– Each entry comprises 6 words; always align on

24-byte boundary



Programmable Addressing
• Src and /or Dst Address can:

– Remain Static
– Increment
– Decrement
– Modified by signed index values
– Replaced with Link parameters

• Independently programmable for Source and
Destination

• Indexing allows different strides between elements
and between frames

• Allows:
– 2D  Block Transfers on a single event
– Circular Buffering via Linked List
– Data Sorting/Interleaving



• EDMA architecturally has three sections
– EDMA controller and parameter RAM

– Transfer Crossbar (TC)

– Transfer Request (TR) nodes

EDMA Architecture

EDMA TC

TR TR Request Queues

I/O ports:
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internal memory,
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System events
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timers, /EINTz,
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TR

HPI Requests



EDMA Controller and PaRAM
• Captures events from all

system DMA requesters
• Simultaneous events

serviced via priority encoder
• FSM reads parameter block

from dedicated 2KB PaRAM
• Formatted to create a TRP

(Transfer Request Packet),
and sent to TC via TR node

• Parameter updates and
linking, while TC performs
I/O

• Essentially, multi-threaded,
special-purpose processor
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EDMA Transfer Parameters
Address Event Parameters
0x01A00000 Event 0, Options
0x01A00004 Event 0, SRC Address
0x01A00008 Event 0,

Array/Frame Count
Event 0,
Element Count

0x01A0000C Event 0, DST Address
0x01A00010 Event 0,

Array/Frame Index
Event 0,
Element Index

0x01A00014 Event 0, Element
Count Reload

Event 0,
Link Address

0x01A00018
to 0x01A0002C

Parameters For Event 1

… …
0x01A00168

to 0x01A0017C
Parameters For Event 15

Address Reload/Link Parameters
0x01A00180 Event N, Options
0x01A00184 Event N, SRC Address
0x01A00188 Event N,

Array/Frame Count
Event N,
Element Count

0x01A0018C Event N, DST Address
0x01A00190 Event N,

Array/Frame Index
Event N,
Element Index

0x01A00194 Event N, Element
Count Reload

Event N,
Link Address

… …
0x01A007E0

to 0x01A007F7
Reload Parameters for Event Z

Unused RAM
0x01A007F8 -

0x01A007FF
Scratch Pad Area

31                     16 15                      0
OPTIONS Word 0

SRC ADDRESS Word 1
ARRAY/FRAME

COUNT
ELEMENT COUNT Word 2

DST ADDRESS Word 3
ARRAY/FRAME

INDEX
ELEMENT INDEX Word 4

ELEMENT COUNT
RELOAD

LINK ADDRESS Word 5

31        29 28      27 26      25 24     23 22 21 20 19         16 15      2 1 0
PRI ESIZE SUM DUM 2DS 2DD TCINT TCC Resv LINK FS

Options Field

Event N Parameters



EDMA Transfer Priority
• Channels have no priorities; Instead their transfer

parameters have Programmable Priority
• 3 Priority Levels available:

– Level 0 / Urgent: NOT valid for EDMA Transfers
– Level 1 / High: Used by EDMA/HPI Transfers
– Level 2 / Low: Used by EDMA Transfers

• Level 1 and 2 Priorities are independently
programmable for 16 channels when competing
for:
– EMIF
– Peripherals
– L2 SRAM

• Priority Queue Status Register indicates if a priority
queue is empty



EDMA: Interrupt Generation
• Generates a single CPU interrupt (EDMA_INT) for all

16 channels
• Transfer Completion Code (TCC:0-15) specified for

each channel sets the relevant Channel Interrupt
Pending bit in CIPR (assuming that the relevant CIER
bit is set)
– Multiple channels can have same TCC - same ISR for

different events

• Channel Complete Interrupt is generated when the
channel executes the transfer to completion -- not
when the transfer request is submitted



TC Architecture

• TR Packets are placed into one of three queues (0 = highest,
2 = lowest)

• Transfers are performed in order within each queue
• TC pipeline processes each set of TR parameters to perform

accesses
• All three queues can be active simultaneously



Typical EDMA Flow
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EDMA Example #1

• Source elements spaced by EIX and frames by FIX
• All destination transfers go to a single address
• EDMA supports linear, fixed, decrement, and indexed

addressing modes

AllDestination address

Source address 0_1 0_2 0_3 0_4

1_1 1_2 1_3 1_4

2_1 2_2 2_3 2_4

EIX

FIX

FIX

EIX EIX

0x23000000
Source address

Destination address
fr_cnt = 0x2 el_cnt = 0x4

fr_index = FIX el_index = EIX
Don't care Don't care

31 0

0001 00 11 0 00 0 0000
31 29 28 27 26 25 24 23 22 21 20 19

PRI ESIZE 2DS SUM 2DD DUM TCINT TCC
00000000000000 0 0

15 2 1 0

Reserved LINK FS

16



EDMA Example #2 - Linking

EIX

FIX

SRC Address
(McBSP)

Buff 1

frame count = 3 (N - 1)

element

element count = 4

1 element per
occurrence

EIXBuff 2
link

FIX4 5 6 74 5 6 74 5 6 7

0 1 2 30 1 2 30 1 2 3 frame

• Double buffering can be easily
set up using linking feature of
EDMA

• Each buffer can create an
interrupt to CPU to inform it
data is ready
(alternatively an EDMA
transfer can set a S/W-visible
flag)

• Increased numbers of buffers
can easily be added through
EDMA parameters

• Many exotic combinations are
possible using EDMA options,
linking and reload



EDMA Example #2 - Linking
Options

McBSP

FM CT = 3

Buff 1

EIX

El CT Reload = 4

EL CT = 4

FIX

Link Address

2DS = 0, 2DD = 0, FS = 0
SRC DIR = 00 (fixed),
DST DIR = 11 (indexed)

Options

McBSP

FM CT = 3

Buff 2

EIX

El CT Reload = 4

EL CT = 4

FIX

Link Address

2DS = 0, 2DD = 0, FS = 0
SRC DIR = 00 (fixed),
DST DIR = 11 (indexed)

Options

McBSP

FM CT = 3

Buff 1

EIX

El CT Reload = 4

EL CT = 4

FIX

Link Address

2DS = 0, 2DD = 0, FS = 0
SRC DIR = 00 (fixed),
DST DIR = 11 (indexed)
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Quick DMA (QDMA)

PRI ESZ SUM DUM2DS 2DD TCINT
31 29 28 27 26 25 24 23 22 21 20

TCC
19 16

Reserved FS
15 1 0

QDMA Options

source address

Element CountLine Count

031

031 16 15

Destination Address

Element IndexLine/Frame Index

031

031 16 15

QDMA_SRC

QDMA_DST

QDMA_OPT

QDMA_CNT

QDMA_IDX

0x02000000

0x02000004

0x02000008

0x0200000C

0x02000010

031

QDMA Options

source address

Element CountLine Count

031

031 16 15

Destination Address

Element IndexLine/Frame Index

031

031 16 15

QDMA_S_SRC

QDMA_S_DST

QDMA_S_OPT

QDMA_S_CNT

QDMA_S_IDX

0x02000020

0x02000024

0x02000028

0x0200002C

0x02000030

031
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• QDMAs can be submitted
by CPU as a “fire-n-forget”
type block transfer

• QDMA registers are
accessible in a single cycle

• Pseudo-mapping of submit
registers allow back-to-
back similar transfers to be
submitted in a single cycle

• QDMAs support all
addressing modes as the
EDMA

• QDMAs do not support
linking, but may be
“chained” to EDMA events



QDMA Programming Model
• Initial requests

– Perform 4 writes to QDMA registers to set up
parameters

– Perform fifth write to QDMA pseudo register to set
up fifth parameter and automatically submit
transfer request

• Subsequent requests
– Write only changing parameters to QDMA pseudo

registers to update parameters and submit request
• Interrupts and chaining are supported

exactly as with the EDMA



Conclusion

• Two ways that DMA is important in
DSP systems:
– Lower interrupt rate and therefore lower

overhead from interrupts
– Scheduling data into low-latency

memories
• These have convinced DSP vendors to

provide sophisticated DMA controllers
in our on-chip systems.
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