Utilizing channel information at the CDMA transmitter

Balaji Raghothaman, Nokia Research Center, Irving, TX. Balaji.raghothaman@nokia.com

Outline

Introduction

Channel knowledge: Why?

Channel information: How?

Reciprocal beamforming

Feedback methods

Adaptive methods

Standards Proposals

Nokia Research Center, Dallas

- Capacity of cellular systems can be increased by employing multiple antennas, either at the receiver or the transmitter or both.
- Multiple antennas can be placed in order to provide either diversity or directivity or both.
- Larger antenna spacing -> independent channels -> diversity.
- Smaller antenna spacing -> correlated channels -> directivity.

Introduction (2)

- Space-time code designs like the Alamouti scheme provide diversity gains by making it possible to achieve separable diversity paths from the composite signal at the receiver antenna.
- The availability of channel information makes it possible to increase these gains so that they are comparable to receiver diversity gains.
- The addition of antenna gain to the diversity gain makes this possible.
- Some of the ways in which channel information can be used are:
 - Power control
 - Link adaptation
 - Scheduling
 - Antenna switching
 - Beamforming / weighted diversity
 - MIMO transmission

Multiantenna transmission

Using Channel State Information

Channel Information: Why ?

• Alamouti Scheme:

$$\begin{bmatrix} r_e \\ r_o \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} h_1 x_o W + h_2 x_e^* W \\ h_1 x_e W - h_2 x_o^* W \end{bmatrix} + \begin{bmatrix} \gamma_e \\ \gamma_o \end{bmatrix}$$
$$SNR \leq \frac{\left|h_1\right|^2 + \left|h_2\right|^2}{2} \frac{Es}{No}.$$

• Weighted diversity transmission:

$$y = \begin{bmatrix} h_1 & h_2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} x + \gamma$$

$$SNR \le \left(\frac{|h_1|^2 + |h_2|^2}{\sqrt{|h_1|^2 + |h_2|^2}}\right)^2 \frac{Es}{No} = \left(|h_1|^2 + |h_2|^2\right) \frac{Es}{No}$$

Joint beamforming and power allocation

- Naguib et.al. showed the capacity gains due to the usage of multiple antennas for beamforming on the downlink.
- The problem of estimating the beamforming weights at the base station can be cast as an optimization problem which maximizes the SINR at the mobile in question.
- Beamforming can be combined with power control as a joint optimization problem over all mobiles and base-stations in a network vicinity. (Farrokhi *et.al.*)

$$\Gamma_{i} = \frac{\tilde{P}_{i} \mathbf{w}_{i}^{H} G_{ii}^{S} \mathbf{w}_{i}}{\sum_{b} \tilde{P}_{b} \mathbf{w}_{b}^{I} G_{ib}^{S} \mathbf{w}_{b} + \tilde{N}_{i}},$$
$$\min_{\tilde{\mathbf{P}}, \mathbf{A}} \sum_{i} \tilde{P}_{i} \|\mathbf{w}_{i}\|^{2}, \text{ subject to } \Gamma_{i} \geq \gamma$$

Channel Information: How?

NOKIA

Reciprocity

- Reciprocity applicable only to duplex systems.
- In Time Division Duplex systems (TDD), the channel is assumed to be identical in both directions. Hence transformation is not needed – except for a possible temporal interpolation.

Reciprocity in TDD systems

- In Frequency Division Duplex systems (FDD), the channel on the uplink is different from the downlink channel due to the difference in carrier frequency.
- Instantaneous channel cannot be tracked using reciprocity in FDD.
- However there is a relation between the average channel covariance of the uplink and the downlink.

Spatial Channel Model

 The multipath channel is modeled as having angles of arrival and angular spread associated with them.

• The correlation between antenna elements is given by:

$$r(D) = J_0 \left(2\pi \frac{D}{\lambda_c} \right) + 2\sum_{k=1}^{\infty} (j)^k J_k \left(2\pi \frac{D}{\lambda_c} \right) \cos(k\theta) \operatorname{sinc}(k\Delta/\pi)$$

Spatial Correlation

Reciprocity in FDD

- First approach is to estimate θ and Δ for each path on the uplink, and then use it to estimate the downlink channel covariance matrix.
 - Δ is extremely difficult to estimate. (Olivier Besson and Petre Stoica, 2000)
 - Errors in estimation of θ and Δ lead to significant degradation.
- Second approach is to find a transformation that directly maps the uplink channel covariance matrix to the downlink equivalent.
- Two methods to estimate this transformation will be discussed:
 - 1. Fourier series expansion.
 - 2. Discrete Fourier Transform interpolation.

Reciprocity in FDD: Fourier series expansion

• The channel covariance matrix can be expressed as a Fourier series:

$$\boldsymbol{R}_{u(d),k}^{s} = E_{\beta,\alpha}[\boldsymbol{a}_{u(d),k}\boldsymbol{a}_{u(d),k}^{H}] \approx \sum_{l=-L+1}^{L-1} c_{kl} \boldsymbol{\Psi}_{u(d),k}^{l},$$

$$\boldsymbol{\Psi}_{uk}^{l} = \int_{-\pi/Q}^{\pi/Q} \boldsymbol{v}(\theta \mid f_{uk}) \boldsymbol{v}^{H}(\theta \mid f_{uk}) e^{jlQ \theta} d\theta$$

• Only the terms c_{kl} have to be estimated online. Least squares approaches can be used:

$$\hat{\boldsymbol{c}} = \arg \min \left\| \hat{\boldsymbol{R}}_{u_k} - \sum_{l=-L+1}^{L-1} c_{kl} \boldsymbol{\Psi}_{u,k}^l \right\|_F^2$$

• Once estimated, the terms c_{kl} can be used to arrive at the downlink channel covariance matrix.

(Fonollosa *et. al*, 2000)

Reciprocity in FDD: DFT redistribution

- Applicable to uniformly spaced linear arrays.
- The up(down)link spatial signature for each angle is given by

$$\mathbf{v}(\theta \mid f_{u(d)}) = [1, \ e^{j2\pi \ f_{u(d)}\frac{z}{c}\cos\theta}, \ \dots, \ e^{j(M-1)\ 2\pi \ f_{u(d)}\frac{z}{c}\cos\theta}]^T$$

- The DFT of the first column of the uplink **R** gives the frequency response, sampled at radial frequencies $[0 \ 2\pi/N, ..., 2\pi(N-1)/N]$.
- From uplink to downlink, the angular frequencies have shifted, hence the mapping of the DFT indices is given by

$$\begin{bmatrix} 0,1,2,\ldots,(\frac{N}{2}-1) \end{bmatrix} \rightarrow \alpha \begin{bmatrix} 0,1,2,\ldots,(\frac{N}{2}-1) \end{bmatrix},$$
$$\begin{bmatrix} \frac{N}{2},(\frac{N}{2}+1),\ldots,(N-1) \end{bmatrix} \rightarrow (N-1) - \alpha \begin{bmatrix} (\frac{N}{2}-1),\ldots,1,0 \end{bmatrix}, \text{ where } \alpha = \frac{f_d}{f_u}$$

- We can shift back to equally spaced DFT by using a nearest neighbor interpolation.
- Finally IDFT gives first column of downlink channel correlation matrix.

Reciprocity in FDD: DFT redistribution

Feedback Methods for Tx. Diversity : Issues

- There is very limited feedback bandwidth.
 Hence these methods suffer from severe *quantization* effects.
- They try to keep up with instantaneous channel hence they *fail in fast fading* conditions.
- The *delay* involved in receiving feedback also causes degradation in fast fading.
- There is currently no *error* protection for the feedback channel (in WCDMA). Any errors due to feedback result in incorrectly weighted transmission.
- There is no simple *soft handoff* solution.

Effect of Feedback Delay

Channel prediction to combat delay

• The fading channel can be modeled as an autoregressive (AR) model:

• The parameters a_i can be estimated using a prediction model.

 The feedback is calculated based on the predicted channel conditions instead of the currently measured conditions.

Channel Prediction (2)

Frame error rate at 50 kph, Pilot S NR = 15 dB

Combating feedback error

- Incorrectly received feedback leads to erroneous weighted transmisison.
- The process of correcting feedback errors at the mobile receiver is called *verification*.
- Dedicated pilots are used to aid this process of verification.
- The hypothesis being tested is given as:

$$H_0: w_{l,k}^c = \Im \Big(\theta_{l,k-1}, \hat{\theta}_{l,k-2}, \dots, \hat{\theta}_{l,k-N} \Big),$$

$$H_1: w_{l,k}^e = \Im\left(\overline{\theta}_{l,k-1}, \hat{\theta}_{l,k-1}, \dots, \hat{\theta}_{l,k-N}\right)$$

- We assume that the error probability associated with the feedback is known: $p(\hat{\theta}_{l,k} = \theta_{l,k}) = p_c \text{ and } p(\hat{\theta}_{l,k} = \overline{\theta}_{l,k}) = p_e = 1 p_c$
- The Bayesian rule gives: $\frac{p(z/H_1)}{p(z/H_0)} > \frac{p(H_0)}{p(H_1)} \Rightarrow H_1$, else H_0
- Assuming that the noise is AWGN,

$$\frac{2\gamma}{\sigma^2} \operatorname{Re}\left[h_d h_c^* \left(w_{l,k}^e - w_{l,k}^c\right)^*\right] > \ln\left(\frac{p_c}{p_e}\right) \Longrightarrow H_1$$

Transmission subspace tracking

- Feedback methods discussed so far have related to some kind of instantaneous quantized feedback.
- Adaptive subspace tracking is a possibility, but is limited by feedback bandwidth.
- A perturbation based gradient approach was recently proposed.
- The concept originated in stochastic control theory and neural network learning.
- This class of methods works for correlated environments. It also gives good performance in uncorrelated low mobility conditions.
- The feedback bandwidth required is independent of the number of antennas.

Transmission subspace tracking (2)

• The cost function to be maximized is given by $J_k = \frac{\mathbf{w}_k^H \hat{\mathbf{R}}_k \mathbf{w}_k}{\mathbf{w}_k^H \mathbf{w}_k}$

• The gradient of the cost function is then $\mathbf{g}_k = \frac{\partial J_k}{\partial \mathbf{w}_k} = \frac{2\hat{\mathbf{R}}_k \mathbf{w}_k}{\mathbf{w}_k^H \mathbf{w}_k}$ and the adaptation is given as $\mathbf{w}_{k+1} = \mathbf{w}_k + \mu \mathbf{g}_k$

- Feedback of entire gradient vector is not feasible.
- Perturbation approach: If we perturb the weight vector by a random complex vector in either direction as $\mathbf{w}_{e(o)} = \mathbf{w}_k \pm \beta \Delta \mathbf{w}_k$, and estimate the received power in each case, then,

 $E_{\Delta \mathbf{w}}[c\Delta \mathbf{w}] \propto \mathbf{g}_{k}, \text{ where } c = \frac{\mathbf{w}_{e}^{H} \hat{\mathbf{R}}_{k} \mathbf{w}_{e}}{\mathbf{w}_{e}^{H} \mathbf{w}_{e}} - \frac{\mathbf{w}_{o}^{H} \hat{\mathbf{R}}_{k} \mathbf{w}_{o}}{\mathbf{w}_{o}^{H} \mathbf{w}_{o}}$ • Now the scalar quantity c can be fed back with any precision.

Deterministic perturbation

- Consider $\tilde{\mathbf{Q}}_{M} = [\mathbf{Q}_{M} \ j\mathbf{Q}_{M}]$ where $\mathbf{Q}_{M} = [\mathbf{q}_{0}, \mathbf{q}_{1}, \dots, \mathbf{q}_{M-1}]$ form an orthonormal set of *M*-length vectors. The perturbation vector is selected from this set.
- Using an approximation from the gradient:

 $c\Delta \mathbf{w} = 2\beta \left(\mathbf{g}_{k}^{H}\Delta \mathbf{w} + \Delta \mathbf{w}^{H}\mathbf{g}_{k}\right)\Delta \mathbf{w}$

The expected value is given as:

$$E[c\Delta \mathbf{w}] = \frac{\beta}{2M} \left[\sum_{i} (\mathbf{g}_{k}^{H} \mathbf{q}_{i} + \mathbf{q}_{i}^{H} \mathbf{g}_{k}) \mathbf{q}_{i} \right] + \frac{\beta}{M} \left[\sum_{i} (\mathbf{g}_{k}^{H} (j\mathbf{q}_{i}) + (j\mathbf{q}_{i})^{H} \mathbf{g}_{k}) (j\mathbf{q}_{i}) \right]$$
$$= \frac{\beta}{M} \left[\sum_{i} (\mathbf{q}_{i}^{H} \mathbf{g}_{k}) \mathbf{q}_{i} \right]$$
$$= \frac{\beta}{M} \mathbf{Q}_{M} \mathbf{Q}_{M}^{H} \mathbf{g}_{k}$$
$$= \frac{\beta}{M} \mathbf{g}_{k}, \text{ since } \mathbf{Q}_{M} \mathbf{Q}_{M}^{H} = \mathbf{I}$$

Transmission subspace tracking (4)

WCDMA/HSDPA

- 1. Mode 1: Involves phase feedback only. Feedback rate is 1500 bps.
 - Phase quantized to 1-bit according to set partitioning in table:

Bit	Even Slot	Odd Slot
0	0	π/2
1	π	-π/2

• Weight is obtained by filtering over multiple phase feedbacks.

$$w_{m,k} = \left(\sum_{l=1}^{N} e^{j\theta_{k-l}}\right) / \left|\sum_{l=1}^{N} e^{j\theta_{k-l}}\right|$$

- 2. Mode 2: Magnitude and phase feedback.
 - Two bits magnitude and three bits phase.
 - Successive updating using 1-bit feedback each time.

Proposals for Release 6: Eigenbeamformer

- Tracks long term covariance matrix at the mobile, and estimates the eigenvectors corresponding to 2 largest eigenvalues.
- Feeds back the 2 quantized eigenvectors at rate of 1 bit per frame.
- The short term feedback consists of selecting between the 2 eigenvectors.
- Has shown good performance with correlated antennas.

Per Antenna Rate Control (PARC)

- 2x2 MIMO scheme.
- Takes "water filling" approach.
- Control the modulation and coding schemes, as well as packet size of data stream emanating from each antenna, using strength of channel as criteria.
- Decoder complexity and design is an issue

Challenges : System evaluation

System simulation : 19 cells, 57 sectors, 120 mobiles, 2Tx-1Rx antenna

(Ack: Zhouyue Pi, NRC Dallas)

Further study areas

- Packet data is moving towards shorter bursts of high density transmissions.
 - In this paradigm, is most of the gain in better scheduling rather than in space-time code design or MIMO design ? (Pramod Vishwanath, IT, 2002)
- Better (more) feedback on the reverse link leads to better downlink design -> For higher capacity on one link, we sacrifice some capacity on the other link. What is the trade-off ?

