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Introduction 

• Capacity of cellular systems can be increased by employing multiple 
antennas, either at the receiver or the transmitter or both.

• Multiple antennas can be placed in order to provide either diversity or 
directivity or both.

• Larger antenna spacing -> independent channels -> diversity.

• Smaller antenna spacing -> correlated channels -> directivity.

MobileBase Station
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Introduction (2)

• Space-time code designs like the Alamouti scheme provide diversity 
gains by making it possible to achieve separable diversity paths from 
the composite signal at the receiver antenna. 

• The availability of channel information makes it possible to increase 
these gains so that they are comparable to receiver diversity gains.

• The addition of antenna gain to the diversity gain makes this possible.

• Some of the ways in which channel information can be used are:
• Power control
• Link adaptation
• Scheduling
• Antenna switching
• Beamforming / weighted diversity 
• MIMO transmission
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Using Channel State Information
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• Alamouti Scheme:

• Weighted diversity transmission:

Channel Information: Why ?
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Joint beamforming and power allocation

• Naguib et.al. showed the capacity gains due to the usage of multiple 
antennas for beamforming on the downlink.

• The problem of estimating the beamforming weights at the base 
station can be cast as an optimization problem which maximizes the 
SINR at the mobile in question. 

• Beamforming can be combined with power control as a joint 
optimization problem over all mobiles and base-stations in a network 
vicinity. (Farrokhi et.al.)
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Channel Information: How?

• Reciprocity 

• Feedback
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Reciprocity
• Reciprocity applicable only to duplex systems.
• In Time Division Duplex systems (TDD), the channel is assumed to be 

identical in both directions. Hence transformation is not needed –
except for a possible temporal interpolation.

• In Frequency Division Duplex systems (FDD), the channel on the uplink 
is different from the downlink channel due to the difference in carrier 
frequency.

• Instantaneous channel cannot be tracked using reciprocity in FDD.
• However there is a relation between the average channel covariance of 

the uplink and the downlink.

Uplink slot:
Measure
channel

Downlink slot:
Use channel
information

Uplink slot:
Measure
channel

Downlink slot:
Use channel
information

Reciprocity in TDD systems
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Spatial Channel Model

• The multipath channel is modeled as having angles of arrival and 
angular spread associated with them.

• The correlation between antenna elements is given by:
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Reciprocity in FDD

• First approach is to estimate θ and ∆ for each path on the uplink, and 
then use it to estimate the downlink channel covariance matrix.
• ∆ is extremely difficult to estimate.

(Olivier Besson and Petre Stoica, 2000)
• Errors in estimation of θ and ∆ lead to significant degradation.

• Second approach is to find a transformation that directly maps the 
uplink channel covariance matrix to the downlink equivalent.

• Two methods to estimate this transformation will be discussed:
1. Fourier series expansion.
2. Discrete Fourier Transform interpolation.
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Reciprocity in FDD: Fourier series expansion
• The channel covariance matrix can be expressed as a Fourier series:

• Only the terms ckl have to be estimated online. Least squares 
approaches can be used: 

• Once estimated, the terms ckl can be used to arrive at the downlink 
channel covariance matrix.

(Fonollosa et. al, 2000)
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Reciprocity in FDD: DFT redistribution
• Applicable to uniformly spaced linear arrays.

• The up(down)link spatial signature for each angle is given by 

• The DFT of  the first column of the uplink R gives the frequency response, sampled at 
radial frequencies [0 2π/N , … , 2π(N-1)/N ]. 

• From uplink to downlink, the angular frequencies have shifted, hence the mapping 
of the DFT indices is given by

• We can shift back to equally spaced DFT by using a nearest neighbor interpolation.

• Finally IDFT gives first column of downlink channel correlation matrix. 

( ) ( )2 cos ( 1) 2 cos

( )( | ) [1, ]u d u d
z zj f j M f Tc c

u df e e
π θ π θ−

=v θ ,  . . . ,

( )

0,1, 2, , ( 1) 0,1, 2, , ( 1) ,
2 2

, ( 1), , ( 1) 1 ( 1), ,1,0 ,  where 
2 2 2

d

u

N N

fN N NN N
f

α

α α

   − → −      
   + − → − − − =      

K K

K K



17 © NOKIA FILENAMs.PPT/ DATE / NN

Reciprocity in FDD: DFT redistribution
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Feedback Methods for Tx. Diversity : Issues

• There is very limited feedback bandwidth. 
Hence these methods suffer from severe quantization effects.

• They try to keep up with instantaneous channel –
hence they fail in fast fading conditions. 

• The delay involved in receiving feedback also causes degradation in 
fast fading.

• There is currently no error protection for the feedback channel (in 
WCDMA). Any errors due to feedback result in incorrectly weighted 
transmission.

• There is no simple soft handoff solution.



19 © NOKIA FILENAMs.PPT/ DATE / NN

Effect of Feedback Delay
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Channel prediction to combat delay
• The fading channel can be modeled as an autoregressive (AR) model:

• The parameters aj can be estimated using a prediction model.

• The feedback is calculated based on the predicted channel conditions 
instead of the currently measured conditions.
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Channel Prediction (2)
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Combating feedback error
• Incorrectly received feedback leads to erroneous weighted transmisison.

• The process of correcting feedback errors at the mobile receiver is called 
verification.

• Dedicated pilots are used to aid this process of verification.

• The hypothesis being tested is given as:

• We assume that the  error probability associated with the feedback is 
known:  

• The Bayesian rule gives: 

• Assuming that the noise is AWGN, 
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Transmission subspace tracking

• Feedback methods discussed so far have related to some kind of 
instantaneous quantized feedback.

• Adaptive subspace tracking is a possibility, but is limited by feedback 
bandwidth.

• A perturbation based gradient approach was recently proposed.

• The concept originated in stochastic control theory and neural network 
learning.

• This class of methods works for correlated environments. It also gives 
good performance in uncorrelated low mobility conditions.

• The feedback bandwidth required is independent of the number of 
antennas.
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Transmission subspace tracking (2)

• The cost function to be maximized is given by

• The gradient of the cost function is then                       and the 
adaptation is given as  

• Feedback of entire gradient vector is not feasible. 

• Perturbation approach: If we perturb the weight vector by a random 
complex vector in either direction as  , and estimate 
the received power in each case, then,

• Now the scalar quantity c can be fed back with any precision. 
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Deterministic perturbation

• Consider                            where                       form an 
orthonormal set of M-length vectors. The perturbation vector is 
selected from this set.

• Using an approximation from the gradient:

• The expected value is given as:

[ ]M M Mj=Q Q Q% [ ]0 1 1, , ,M M −=Q q q qK

( )2 H H
k kc β∆ = ∆ + ∆ ∆w g w w g w

[ ] ( ) ( ) ( )( )( )

( )
2

,  since 

HH H H
k i i k i k i i k i

i i

H
i k i

i

H
M M k

H
k M M

E c j j j
M M

M

M

M

β β

β

β

β

   ∆ = + + +      
 =   

=

= =

∑ ∑

∑

w g q q g q g q q g q

q g q

Q Q g

g Q Q I



26 © NOKIA FILENAMs.PPT/ DATE / NN

Transmission subspace tracking (3)
Base Station
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Transmission subspace tracking (4)
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WCDMA/HSDPA

1. Mode 1: Involves phase feedback only. Feedback rate is 1500 bps.
• Phase quantized to 1-bit according to set partitioning in table:

• Weight is obtained by filtering over multiple phase feedbacks.

2. Mode 2: Magnitude and phase feedback.
• Two bits magnitude and three bits phase.
• Successive updating using 1-bit feedback each time.
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Proposals for Release 6: Eigenbeamformer

• Tracks long term covariance matrix at the mobile, and estimates the 
eigenvectors corresponding to 2 largest eigenvalues.

• Feeds back the 2 quantized eigenvectors at rate of 1 bit per frame.

• The short term feedback consists of selecting between the 2 
eigenvectors.

• Has shown good performance with correlated antennas.

Slot 1 Slot 2 Slot 15 Slot 1 Slot 2
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Per Antenna Rate Control (PARC)

• 2x2 MIMO scheme.

• Takes “water filling” approach.

• Control the modulation and coding schemes, as well as packet size of 
data stream emanating from each antenna, using strength of channel 
as criteria.

• Decoder complexity and design is an issue

MobileBase Station

Packet A

Packet B
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Challenges : System evaluation
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Further study areas

• Packet data is moving towards shorter bursts of high density 
transmissions. 

• In this paradigm, is most of the gain in better scheduling rather 
than in space-time code design or MIMO design ? ( Pramod Vishwanath, 
IT, 2002)

• Better (more) feedback on the reverse link leads to better downlink 
design -> For higher capacity on one link, we sacrifice some capacity 
on the other link.  What is the trade-off ?


